用机器学习做实验总是遇到ValueError: bad input shape (156327, 10)的问题,查找资料最相近的一个回答是https://blog.csdn.net/qq_27017791/article/details/79514919
,但并不能解决这个问题,十分头疼,具体代码如下
`#KNN
#from sklearn.cross_validation import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
knn =KNeighborsClassifier()
knn.fit(train_images,train_labels)
knn_y_predict = knn.predict(test_images)
count = 0
for i in range(len(knn_y_predict)):
if(tf.argmax(knn_y_predict,1)[i] == tf.argmax(test_labels,1)[i]):
count += 1
print(‘accuracy is %0.2f%%’%(100*count/len(knn_y_predict)))`
该knn程序是正常的,但是把它改成贝叶斯,SVM,逻辑回归都会遇到ValueError: bad input shape (156327, 10)的问题,经过仔细分析发现问题所在
在knn中knn_y_predict是(156327,441)的数组,因此使用tf.argmax(knn_y_predict,1)刚好可以把向量转化为值,但在svm和贝叶斯逻辑回归中svm_y_predict已经转化为值了
此处不需要使用tf.argmax()函数进行转化了,因此只需要改动if(svm_y_predict[i] == tf.argmax(test_labels,1)[i])即可