二叉树的基本操作(代码示例及测试类代码及运行截图)

二叉树的基本操作

// 前序遍历
void preOrderTraversal(Node root);
// 中序遍历
void inOrderTraversal(Node root);
// 后序遍历
void postOrderTraversal(Node root);
// 遍历思路-求结点个数
static int size = 0;
void getSize1(Node root);
// 子问题思路-求结点个数
int getSize2(Node root);
// 遍历思路-求叶子结点个数
static int leafSize = 0;
void getLeafSize1(Node root);
// 子问题思路-求叶子结点个数
int getLeafSize2(Node root);
// 子问题思路-求第 k 层结点个数
int getKLevelSize(Node root);
// 获取二叉树的高度
int getHeight(Node root);
// 查找 val 所在结点,没有找到返回 null
// 按照 根 -> 左子树 -> 右子树的顺序进行查找
// 一旦找到,立即返回,不需要继续在其他位置查找
Node find(Node root, int val);

代码示例:

class BTNode {
    public char val;//定义一个节点存放字母
    public BTNode left;
    public BTNode right;

    public BTNode(char val) {//提供一个构造方法
        this.val = val;
    }
}



public class BinaryTree {
    /**
     * 首先创建二叉树
     * @return
     */
    public BTNode creatTree(){
        BTNode A = new BTNode('A');
        BTNode B = new BTNode('B');
        BTNode C = new BTNode('C');
        BTNode D = new BTNode('D');
        BTNode E = new BTNode('E');
        BTNode F = new BTNode('F');
        BTNode G = new BTNode('G');
        BTNode H = new BTNode('H');
        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        E.right= H;
        C.left = F;
        C.right= G;
        return A;

    }
    // 前序遍历
    void preOrderTraversal(BTNode root){//输入的参数为根节点
        if (root == null) return;
        System.out.print(root.val);
        preOrderTraversal(root.left);
        preOrderTraversal(root.right);


    }
    // 中序遍历
    void inOrderTraversal(BTNode root){
        if(root == null) return;
        inOrderTraversal(root.left);
        System.out.print(root.val);
        inOrderTraversal(root.right);


    }
    // 后序遍历
    void postOrderTraversal(BTNode root){
        if(root == null) return;
        postOrderTraversal(root.left);
        postOrderTraversal(root.right);
        System.out.print(root.val);


    }
    // 遍历思路-求结点个数
    static int size = 0;
    void getSize1(BTNode root){
        if(root == null) return;
        size++;
        getSize1(root.right);
        getSize1(root.left);


    }
    // 子问题思路-求结点个数
    int getSize2(BTNode root){
        if(root == null) return 0;
        return getSize2(root.left) + getSize2(root.right) + 1;


    }
    // 遍历思路-求叶子结点个数
    static int leafSize = 0;
    void getLeafSize1(BTNode root){
        if(root == null) return;
        if(root.left == null && root.right == null) {
            leafSize++;
        }
        getLeafSize1(root.left);
        getLeafSize1(root.right);

    }
    // 子问题思路-求叶子结点个数
    int getLeafSize2(BTNode root){
        if(root == null) return 0;
        if(root.left == null && root.right == null) {
            return 1;
        }
        return getLeafSize2(root.left) + getLeafSize2(root.right);

    }
    // 子问题思路-求第 k 层结点个数
    int getKLevelSize(BTNode root, int k){
        if(root == null) {
            return 0;
        }
        if(k == 1) {
            return 1;
        }
        return getKLevelSize(root.left,k-1)+
                getKLevelSize(root.right,k-1);

    }
    // 获取二叉树的高度
    int getHeight(BTNode root) {
        if(root == null) return 0;

        return getHeight(root.left) > getHeight(root.right) ?
                getHeight(root.left)+1 : getHeight(root.right)+1;
    }


    BTNode find(BTNode root, int val) {
        if(root== null) return null;
        if(root.val == val){
            return root;
        }
        BTNode ret = find(root.left,val);
            if(ret == null){
                return ret;
            }
        ret = find(root.right,val);
        if(ret == null){
            return ret;
        }
        return null;
    }
}

测试类代码:

/**
 * 二叉树基础操作测试类
 */

public class TestDemo {
    public static void main(String[] args) {
        BinaryTree binaryTree = new BinaryTree();
        BTNode root = binaryTree.creatTree();
        binaryTree.preOrderTraversal(root);
        System.out.println();
        binaryTree.inOrderTraversal(root);
        System.out.println();
        binaryTree.postOrderTraversal(root);
        System.out.println();
        binaryTree.getSize1(root);
        System.out.println(binaryTree.size);
        System.out.println(binaryTree.getSize2(root));
        binaryTree.getLeafSize1(root);
        System.out.println(binaryTree.leafSize);
        System.out.println(binaryTree.getLeafSize2(root));
        System.out.println(binaryTree.getKLevelSize(root,4));

       // System.out.println(binaryTree.getKLevelSize(root,4));

        //System.out.println(binaryTree.getHeight(root));
        BTNode ret = binaryTree.find(root,'A');
        if(ret == null) {
            System.out.println("没有找到");
            return;
        }
        System.out.println(ret.val);
    }
    }


运行代码截图:
在这里插入图片描述

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是二叉树基本操作代码,包括手动创建二叉树、遍历二叉树、获取节点个数、获取叶子节点个数、获取二叉树高度、检测元素是否存在、层序遍历和判断是否为完全二叉树: ```python # 定义二叉树节点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 手动创建二叉树 def create_tree(): root = TreeNode(1) root.left = TreeNode(2) root.right = TreeNode(3) root.left.left = TreeNode(4) root.left.right = TreeNode(5) root.right.left = TreeNode(6) root.right.right = TreeNode(7) return root # 前序遍历 def preorder_traversal(root): if not root: return [] res = [] stack = [root] while stack: node = stack.pop() res.append(node.val) if node.right: stack.append(node.right) if node.left: stack.append(node.left) return res # 中序遍历 def inorder_traversal(root): if not root: return [] res = [] stack = [] node = root while stack or node: while node: stack.append(node) node = node.left node = stack.pop() res.append(node.val) node = node.right return res # 后序遍历 def postorder_traversal(root): if not root: return [] res = [] stack = [root] while stack: node = stack.pop() res.append(node.val) if node.left: stack.append(node.left) if node.right: stack.append(node.right) return res[::-1] # 获取节点个数(迭代) def get_node_count_iteration(root): if not root: return 0 count = 0 stack = [root] while stack: node = stack.pop() count += 1 if node.left: stack.append(node.left) if node.right: stack.append(node.right) return count # 获取节点个数(递归) def get_node_count_recursion(root): if not root: return 0 return 1 + get_node_count_recursion(root.left) + get_node_count_recursion(root.right) # 获取叶子节点个数(迭代) def get_leaf_count_iteration(root): if not root: return 0 count = 0 stack = [root] while stack: node = stack.pop() if not node.left and not node.right: count += 1 if node.left: stack.append(node.left) if node.right: stack.append(node.right) return count # 获取叶子节点个数(递归) def get_leaf_count_recursion(root): if not root: return 0 if not root.left and not root.right: return 1 return get_leaf_count_recursion(root.left) + get_leaf_count_recursion(root.right) # 获取二叉树高度 def get_tree_height(root): if not root: return 0 return max(get_tree_height(root.left), get_tree_height(root.right)) + 1 # 检测元素是否存在 def check_element_exist(root, val): if not root: return False if root.val == val: return True return check_element_exist(root.left, val) or check_element_exist(root.right, val) # 层序遍历 def level_order_traversal(root): if not root: return [] res = [] queue = [root] while queue: level = [] for i in range(len(queue)): node = queue.pop(0) level.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) res.append(level) return res # 判断是否为完全二叉树 def is_complete_tree(root): if not root: return True queue = [root] flag = False while queue: node = queue.pop(0) if node.left: if flag: return False queue.append(node.left) else: flag = True if node.right: if flag: return False queue.append(node.right) else: flag = True return True ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值