关于faster-rcnn中anchor box与bbox

本文详细介绍了目标检测中锚框(anchorbox)的概念及其作用。解释了如何通过不同尺度和宽高比的锚框提高检测准确性,并探讨了锚框与特征图的关系及IOU在训练中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题提出情况

在学习理解faster-rcnn网络时,都有出现anchor box这一个概念,然而anchor box的大小却是一个确定的值。那么假如你标注的目标框比anchor box小很多的情况下那不是预测得到的检测框不是划出了过多的无效值了吗?


为了解决这个问题在这就需要先了解锚框这个概念

一.锚框(anchor box)/先验框(prior bounding box)

在众多经典的目标检测模型中,均有先验框的说法,有的paper(如Faster RCNN)中称之为anchor(锚点),有的paper(如SSD)称之为prior bounding box(先验框),实际上是一个概念,特此说明。

1.锚框的作用

对于目标检测任务,有这样一种经典解决方案:遍历输入图像上所有可能的像素框,然后选出正确的目标框,并对位置和大小进行调整就可以完成目标检测任务。这些进行预测的像素框就叫锚框。这些锚框通常都是方形的。

同时,为了增加任务成功的几率,通常会在同一位置设置不同宽高比的锚框(本文的方式在改变宽高比的同时维持面积不变)。

2.特征图中的锚框

通常,为了覆盖更多可能的情况,在图中的同一个位置,我们会设置几个不同尺度的先验框。这里所说的不同尺度,不单单指大小,还有长宽比,如下面的示意图所示:
同一位置设置多个不同尺度先验框的可视化
可以看到,通过设置不同的尺度的先验框,就有更高的概率出现对于目标物体有良好匹配度的先验框(体现为高IoU)。

先验框与特征图的对应

除了不同尺度,我们肯定要将先验框铺洒在图片中不同位置上面。

但是遍历原图每个像素,设置的先验框就太多了,完全没必要。如图3-13所示。一个224x224的图片,假设每个位置设置3个不同尺寸的先验框,那么就有224x224x3=150528个,但是如果我们不去遍历原图,而是去遍历原图下采样得到的feature map呢?以vgg16的backbone为例,下采样了5次,得到7x7的feature map,那就只需要得到7x7x3=147个先验,这样的设置大大减少了先验框的数量,同时也能覆盖大多数情况。

3.先验框与IOU

在训练任务阶段,可以在输入图片中插入正确的目标框,以供网络学习ground truth信息。而判断一个锚框是否与目标框相近的指标,很自然的可以选择锚框和目标框的IOU(交并比)。 例如,可以设定一个阈值0.5,如果iou<0.5的先验框,这些框我们将其划分为背景,设为背景框,Iou>=0.5的被归到目标先验框。示例见下图
在这里插入图片描述

二.先验框的参数

如先前所述,一般会在同一位置生成不同形状和大小的多个锚框来增加预测的准确率。形状和大小分别用宽高比和尺度来描述。

1.尺度(scale)与宽高比(ratio)

尺度:描述基准锚框的大小信息。若尺度为a,那么基准锚框由原图的宽和高分别缩小a倍所得。(注意,若宽高缩小为a倍,面积缩小a 2 a^2a
2
倍)
宽高比:生成锚框的形状信息,即最终生成锚框的宽和长的比。在改变宽高比时,应应维持最终生成的锚框和基准锚框的面积恒定。(详见第3个小标题锚框的坐标描述)

2.锚框的生成位置

如前文所述,先把原图像处理后得到77的feature map,再在对应的feature map中生成锚框。下面给出一个示例,对应的把77的feature map 分割成相等大小的7*7的cell,代表位置信息,并画出了在中间位置的具有不同scale 和 ratio 参数的9个锚框。(注意,这里的cell只代表位置信息,与第一个小标题中的scale参数没有关系,即与生成锚框的大小没关系)
在这里插入图片描述
总结: 综上所述其实anchor box可以理解为一个个的卷积滑窗而每一个特征点对应着n个anchor box,而预测任务则是在这一个个anchor box里面去做从而减少了计算量,不在需要每预测一个新目标就需要重新卷积滑窗一遍。其效果如下图所示

在这里插入图片描述
在这里插入图片描述
其中左图为锚点对应的九个anchor ,中间的图为单个锚点在一张图上表达,右图为所有锚点在整幅图上的表达。
参考连接:
目标检测之Faster-RCNN的pytorch代码详解(模型准备篇)
锚框(anchor box)/先验框(prior bounding box)概念介绍及其生成
动手学CV-Pytorch

内容概要:本文档详细介绍了Android开发中内容提供者(ContentProvider)的使用方法及其在应用间数据共享的作用。首先解释了ContentProvider作为四大组件之一,能够为应用程序提供统一的数据访问接口,支持不同应用间的跨进程数据共享。接着阐述了ContentProvider的核心方法如onCreate、insert、delete、update、query和getType的具体功能与应用场景。文档还深入讲解了Uri的结构和作用,它是ContentProvider中用于定位资源的重要标识。此外,文档说明了如何通过ContentResolver在客户端应用中访问其他应用的数据,并介绍了Android 6.0及以上版本的运行时权限管理机制,包括权限检查、申请及处理用户的选择结果。最后,文档提供了具体的实例,如通过ContentProvider读写联系人信息、监听短信变化、使用FileProvider发送彩信和安装应用等。 适合人群:对Android开发有一定了解,尤其是希望深入理解应用间数据交互机制的开发者。 使用场景及目标:①掌握ContentProvider的基本概念和主要方法的应用;②学会使用Uri进行资源定位;③理解并实现ContentResolver访问其他应用的数据;④熟悉Android 6.0以后版本的权限管理流程;⑤掌握FileProvider在发送彩信和安装应用中的应用。 阅读建议:建议读者在学习过程中结合实际项目练习,特别是在理解和实现ContentProvider、ContentResolver以及权限管理相关代码时,多进行代码调试和测试,确保对每个知识点都有深刻的理解。
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导和学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新和维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名和密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问和操作其权限范围内的功能和数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露和非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批和院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生和审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期和请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课和请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导和学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任和院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值