Python中的几种乘法np.dot,np.multiply,*

博客介绍了Python中array和matrix的运算方法。使用array时,运算符 * 计算数量积,dot() 计算矢量积;使用matrix时,运算符 * 计算矢量积,multiply() 计算数量积。还提到np.dot()对二维矩阵计算矩阵乘积,对一维矩阵计算内积,对应元素相乘可用np.multiply()或 * 。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用array时,运算符 * 用于计算数量积(点乘),函数 dot() 用于计算矢量积(叉乘).
使用matrix时,运算符 * 用于计算矢量积,函数multiply() 用于计算数量积.
下面是使用array时:

  1. 同线性代数中矩阵乘法的定义:np.dot()
    np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。
  2. 对应元素相乘element-wise product: np.multiply(), 或 *
    在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。这两种的效果是一样的。
import numpy as np
X = np.array([[1,2],[3,4]])
Y = np.array([[5,6],[7,8]])
a1 = np.dot(X,Y)
print('np.dot(X,Y)=\n',a1)
a2 = np.multiply(X,Y)
print('np.multiply(X,Y)=\n',a2)

运行结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值