ppt画深度学习网络图

最近开始写论文,像这样酷炫的深度学习网络图是咋画的?看了网上的一些方案,基本都是比较小众的软件,学起来比较麻烦,最后发现还是ppt好使。
在这里插入图片描述

1.插入正方体形状

在这里插入图片描述

2.调整成方片

在这里插入图片描述

拉动黄色点和角点,多试试,得到下图:

在这里插入图片描述
设置形状格式,大小和位置。需要根据自己的实际情况调整到舒适的大小,得到正立的方块。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

得到正立的小方块,小方块组成网络图也需要自己根据实际情况调整。

复现的效果如下:

在这里插入图片描述

3.ppt绘制的图片如何插入word中?

  将所有元素组合,选中ppt画的图片右键保存为图片,然后再word中点击插入图片即可!

在这里插入图片描述
在这里插入图片描述

### 关于深度学习论文中的图表绘制方法与工具 在撰写深度学习论文时,高质量的图表对于展示实验结果至关重要。常用的一种方式是利用Python编程语言及其丰富的可视化库来创建这些图表。 #### Matplotlib 和 Seaborn Matplotlib 是一个广泛使用的绘图库,能够生成各种静态、动态图形,并支持多种输出格式[^2]。Seaborn 基于 Matplotlib 构建,提供了更高级别的接口用于统计图形的快速制作,特别适合用来美化数据分布和模型性能比较等内容。 ```python import matplotlib.pyplot as plt import seaborn as sns # 创建样本数据集 data = ... # 使用seaborn出热力图 sns.heatmap(data, annot=True) plt.show() ``` #### Plotly Plotly 提供了一个交互式的绘图平台,可以很容易地构建复杂的三维图像和其他类型的互动式图表。这对于探索高维空间下的特征关系或者时间序列预测的结果尤其有用。 ```python import plotly.express as px df = ... # 数据框对象 fig = px.scatter_3d(df, x='col1', y='col2', z='col3') fig.show() ``` #### TensorFlow 和 Keras 的内置功能 当涉及到神经网络训练过程中的监控指标(如损失函数值随epoch变化曲线),可以直接调用 `tensorflow` 或者 `keras` 中的相关API来进行记录并自动生成相应的图表[^1]。 ```python from tensorflow.keras.callbacks import History history:History = model.fit(...).history plt.plot(history['loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train'], loc='upper right') plt.show() ``` 通过上述几种不同的手段,可以在不依赖特定商业软件的情况下完成大多数情况下所需的学术研究图表工作。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值