偏序相关知识

偏序

  • 参考链接

    全序与偏序

  • 偏序

    • 定义

      • Partiallyordered set,简写poset

      • 设R是集合A上的一个二元关系,若R满足:

        自反性:对任意x∈A,有xRx;

        反对称性(即反对称关系):对任意x,y∈A,若xRy,且yRx,则x=y;

        传递性:对任意x, y,z∈A,若xRy,且yRz,则xRz。

        则称R为A上的偏序关系,通常记作≼。注意这里的≼不必是指一般意义上的“小于或等于”。

        若然有x≼y,我们也说x排在y前面(x precedes y)。

    • 分类

      • 严格偏序,反自反偏序

        • 给定集合S,“<”是S上的二元关系,若“<”满足:

          反自反性:∀a∈S,有a≮a;

          非对称性:∀a,b∈S,a<b ⇒ b≮a;

          传递性:∀a,b,c∈S,a<b且b<c,则a<c;

          则称“<”是S上的严格偏序或反自反偏序

        • 严格偏序与有向无环图(dag)有直接的对应关系。一个集合上的严格偏序的关系图就是一个有向无环图。其传递闭包是它自己

      • 非严格偏序,自反偏序

        • 给定集合S,“≤”是S上的二元关系,若“≤”满足:

          自反性:∀a∈S,有a≤a;

          反对称性:∀a,b∈S,a≤b且b≤a,则a=b;

          传递性:∀a,b,c∈S,a≤b且b≤c,则a≤c;

          则称“≤”是S上的非严格偏序或自反偏序。

    • 例子

      • 假设有 A={1,2,3,4},假设R是集合A上的关系:{<1,1>,<2,2>,<3,3>,<4,4>,<1,2>,<1,4>,<2,4>,<3,4>},那么:

        自反性:可以看到 <1,1>,<2,2>,<3,3>,<4,4> 都在R中,满足。

        反对称性:由于 <1,1>,<2,2>,<3,3>,<4,4> 不属于 x !=y ,所以不考虑这4种,对于 <1,2>,有 <2,1> 不在R中;对于<2,4> 有<4,2>不在R中;对于<3,4> 有<4,3> 不在 R中,满足。

        传递性:<1,1><1,2>在R中,并且<1,2>在R中;<1,1><1,4>在R中,并且<1,4>在R中;<2,2><2,4>在R中,并且<2,4>在R中;<3,3><3,4>在R中,并且<3,4>在R中;等等其他,满足。

        所以说R是偏序关系。

  • 全序

    • 定义

      • 如果R是A上的偏序关系,那么对于任意的A集合上的 x,y,都有 x <= y,或者 y <= x,二者必居其一,那么则称R是A上的全序关系

      • 设集合X上有一全序关系,如果我们把这种关系用 ≤ 表述,则下列陈述对于 X 中的所有 a, b 和 c 成立:

        如果 a ≤ b 且 b ≤ a 则 a = b (反对称性)

        如果 a ≤ b 且 b ≤ c 则 a ≤ c (传递性)

        a ≤ b 或 b ≤ a (完全性)

    • 例子

      • 假设有 A={a,b,c},假设R是集合A上的关系:{<a,a>,<b,b>,<c,c>,<a,b>,<a,c>,<b,c>}和上述一样,可以证明具有自反性,反对称性,传递性,所以是偏序的,有因为有 <a,b>,<a,c>,<b,c>, 也就是说两两关系都有了,所以满足对于任意的A集合上的 x,y,都有 x <= y,或者 y <= x,二者必居其一,所以说是全序关系

  • 区别

    • 偏序集合:配备了偏序关系的集合。

      偏序:只对部分要元素成立关系(部分可比)

      集合内只有部分元素之间在这个关系下是可以比较的。

      比如:比如复数集中并不是所有的数都可以比较大小,那么“大小”就是复数集的一个偏序关系

    • 全序集合:配备了全序关系的集合。

      全序:对集合中任意两个元素都有关系

      集合内任何一对元素在在这个关系下都是相互可比较的。

      比如:有限长度的序列按字典序是全序的。最常见的是单词在字典中是全序的

    • 例子

      • 集合的包含关系是一种偏序。

        在正整数集中定义偏序:若a能整除b,我们就记为a≺b

        显然它满足序公理。但整数集中,不是任何两个数都存在整除关系,这个关系是局部的(partial),太“偏颇”,于是被称为偏序

  • Lattice

    • 参考链接

    • Lattice(格)

      • 定义

        • 如果一个偏序集的任意两个元素都有最小上界和最大下界,那么这一偏序集是一个格

    • Semilattice(半格)

      • 定义

        • 最小上界和最大下界只存在一个的偏序集称半格,只存在最小上界称为“join semilattice”,只存在最大下界称为“meet semilattice”

    • Complete Lattice(全格)

      • 定义

      • 一个偏序集的任意子集均存在最小上界和最大下界,那么这个偏序集成为全格

      • 特点

        • 每个全格都存在一个最大元素 top(⊤=⊔P)和最小元素bottom(⊥=⊓P)

        • 所有元素有限的格(finite lattice)均是全格。(反之不成立)

    • Product Lattice(乘积格)

      • 给定n个lattice,L1 = (P1, ⊑1), L2 = (P2, ⊑2), …, Ln = (Pn, ⊑n),如果每个lattice都有对应的⊔i(最小上界)和⊓i(最大下界),那么我们得到一个Product Lattice Ln = (P, ⊑)并有以下四个定义:

        1.P = P1 × … × Pn

        2.(x1, …, xn) ⊑ (y1, …, yn) ⟺ (x1 ⊑ y1) ∧ … ∧ (xn ⊑ yn)

        3.(x1, …, xn) ⊔ (y1, …, yn) = (x1 ⊔1 y1, …, xn ⊔n yn)

        4.(x1, …, xn) ⊓ (y1, …, yn) = (x1 ⊓1 y1, …, xn ⊓n yn)

      • Product Lattice仍是Lattice,若每个子格为全格,那么乘积也是全格

  • 上界与下界

    • 前提

      • 给定偏序集(P, ⊑)及其子集S,满足S ⊆ P,则有:

    • 上界(不唯一)

      • 若∀x ∈ S, x ⊑ u,那么u ∈ P是子集S的上界

    • 下界(不唯一)

      • 若∀x ∈ S, l ⊑ x,那么l ∈ P是子集S的下界

    • 最小上界⊔S(lub)

    • 最大下界⊓S(glb)

    • 特点

      • 不是每个偏序都有lub和glb

      • 但是如果一个偏序有lub和glb,那么它就是唯一的

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值