提供HD-TVP-VAR-DY溢出指数的R语言代码,包含数据、注释和参考论文(有无代码基础都可以直接run到底)

读经典论文,学习经典代码!!

R语言代码,有注释和案例数据,能导出静态溢出矩阵,总溢出指数Total,溢出指数To,溢入指数From,净溢出指数Net 到 EXCEL,并实现画图。

本文所提供的HD-TVP-VAR-DY是基于《中国系统性金融风险的高维时变测度与传导机制研究》-陈少凌这篇所实现的

传统研究因难以同时捕捉高维数据时变关联,难以精准刻画系统性风险的动态演化。本篇论文提供的模型通过改进高维时变参数向量自回归模型(HD-TVP-VAR),通过Elastic Net方法进行降维处理,能够计算高维数据DY溢出指数,相较于传统TVP-VAR-DY模型只能计算最多20个变量,HD-TVP-VAR-DY可同时估计近百个变量,相较于Lasso dy,Elastic Net(弹性网络)DY,HD-TVP-VAR-DY为时变估计,不用损失滚动窗口,且运行速度相对较快。

以下是部分代码截图:

以下是关于参考论文的解读:

学术解析 | 高维时变视角下的中国系统性金融风险:从模型创新到风险治理

一、研究背景:破解金融风险的 “高维” 与 “时变” 密码

在金融全球化与数字化浪潮下,中国金融系统呈现出机构众多、关联复杂的网络特征。传统研究因难以同时捕捉高维数据(如 89 家上市金融机构)和时变关联(如政策冲击、市场波动),难以精准刻画系统性风险的动态演化。本文通过改进高维时变参数向量自回归模型(HD-TVP-VAR),首次实现了对中国金融网络的全局动态测度,为风险监管提供了全新的分析框架。

二、核心思想:金融网络的三重风险逻辑
  1. 机构角色分化:风险的 “生产者” 与 “缓冲器”

    • 银行业

      (如国有大行):呈现 “风险吸收型” 特征,凭借庞大资产规模成为系统风险的最终承接者。

    • 证券期货业

      (如头部券商):扮演 “风险扩散型” 角色,是市场波动的主要源头。

    • 小型机构

      (如部分城商行、新兴金融机构):通过高杠杆和复杂关联形成 “风险杠杆型” 效应,成为风险传导的放大器。

  2. 风险成因:网络结构的脆弱性

    • 过度关联

      总连通指数(TC)超过 0.93 时,风险爆发概率激增,印证 “太关联而不能倒” 的监管担忧。

    • 结构失衡

      风险传导路径从 “收敛型”(风险被银行吸收)转向 “发散型”(风险在扩散型机构间循环)时,系统稳定性骤降。

    • 角色漂移

      流动性高、杠杆率高、规模小的机构更易从 “风险吸收” 转为 “风险扩散”,加剧网络不稳定。

  3. 传导路径:从证券到银行的风险旅程风险通常始于证券期货业,通过保险业和其他金融业放大,最终传导至银行业。例如,2015 年股灾中,证券市场波动经保险资金渠道扩散至银行体系,形成跨行业风险共振。

三、方法论突破:HD-TVP-VAR 模型的底层逻辑
(一)模型架构与技术创新
  1. 基准模型:动态捕捉时变关联基于 TVP-VAR 框架,构建高维动态模型:

    图片

    图片

  2. 降维突破:Elastic Net 正则化

    • 痛点

      传统 VAR 在高维(如 89 家机构)下存在 “维度灾难”,参数估计不稳定。

    • 创新
      引入 Elastic Net 融合 LASSO 与岭回归,通过惩罚项压缩非关键系数(公式 4),保留核心关联,实现降维同时避免系数矩阵过度稀疏。

图片

  1. 动态优化:带遗忘因子的卡尔曼滤波

    • 遗忘因子(lambda_t)

      :自适应调整模型对历史数据的依赖,金融市场剧烈波动时(如 2020 年疫情)快速 “遗忘” 过时信息,实时捕捉新冲击。

    • 波动率更新

      :通过指数加权移动平均(EWMA)动态估计残差方差(公式 11),适配金融数据的厚尾特征。

(二)相较于传统 TVP-VAR 的核心优势
维度传统 TVP-VARHD-TVP-VAR
维度处理

限于低维(如 Diebold-Yilmaz 仅 13 家机构)

支持高维(89 家机构),通过 Elastic Net 实现有效降维

时变捕捉

依赖固定窗宽滚动,易遗漏结构突变

动态模型选择遗忘因子,实时响应市场状态(如风险平稳期 vs. 风险发展期)

参数稳定性

高维下参数估计易受异常值干扰

正则化约束系数矩阵,提升抗噪能力

网络分析

侧重整体关联,忽视个体异质性

区分 “风险吸收 / 扩散 / 杠杆” 三类机构,细化网络角色

四、实证发现:风险网络的全景图谱
  1. 总连通指数(TC)的预警价值

    • TC 水平对长期风险事件(如金融危机)的预测能力显著优于短期波动,当 TC 超过 0.93 时,风险爆发概率超 50%(图 4-5)。

    • 典型案例:2013 年 “钱荒” 期间,TC 飙升至峰值,反映互联网金融冲击下系统关联性骤增。

  2. 机构风险角色的量化识别

    • 风险吸收型

      工商银行、农业银行等国有大行,入度中心性(IDC)显著高于均值,承担系统风险缓冲功能。

    • 风险扩散型

      申万宏源、国泰君安等头部券商,出度中心性(ODC)突出,是市场波动的主要贡献者。

    • 风险杠杆型

      中原证券、张家港行等中小机构,特征向量中心性(EVC)高,通过间接关联放大风险(表 3)。

  3. 风险传导的行业路径

    • 直接路径

      证券期货业→银行业(脉冲响应 17.32%)。

    • 间接路径

      证券期货业→保险业→银行业(累积响应 9.63%+3.66%),保险业的风险放大效应显著(图 7)。

五、学术价值与监管启示
  1. 学术贡献

    • 首次在单一框架内整合 “高维” 与 “时变” 特征,突破传统模型的维度限制,为金融网络研究提供通用方法论。

    • 提出 “风险杠杆型” 机构概念,补充了系统重要性金融机构(SIFIs)的分类体系。

  2. 政策建议

    • 宏观审慎监管

      设定 TC 预警阈值(如 0.9),对过度关联机构实施集中度限制。

    • 行业差异化监管

      对证券业强化杠杆率约束,对银行业建立流动性缓冲机制,对小型机构加强关联交易监控。

    • 动态角色跟踪

      利用 HD-TVP-VAR 实时监测机构风险角色转换,重点防范 “吸收型→扩散型” 的质变(如表 6 中流动性高、规模小的机构)。

六、总结:从模型创新到风险治理的闭环

本文通过 HD-TVP-VAR 模型揭示了中国金融系统的复杂关联本质:少数大型机构是风险 “稳定器”,证券业是 “发动机”,小机构是 “放大器”,而网络结构失衡是风险爆发的导火索。这一发现不仅为学术研究提供了高维时变分析的范式,更警示监管层:在 “双碳” 与金融开放背景下,需以动态网络视角重构宏观审慎框架,既要关注 “大而不能倒”,也要警惕 “小而连倒” 的蝴蝶效应。

参考文献:陈少凌等(2021),《中国系统性金融风险的高维时变测度与传导机制研究》,《世界经济》第 12 期

请勿搬运,违者必究!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值