通过Elastic Net方法进行降维处理,能够计算高维数据DY溢出指数,相较于传统TVP-VAR-DY模型只能计算最多20个变量,HD-TVP-VAR-DY可同时估计近百个变量,相较于Lasso dy,Elastic Net(弹性网络)DY,HD-TVP-VAR-DY为时变估计,不用损失滚动窗口,且运行速度相对较快。
-
概念
-
定义:HD - TVP - VAR - DY 溢出指数(以下简称溢出指数)是一种用于衡量高维(HD)时间序列变量之间动态溢出效应的工具。它基于时变参数向量自回归(TVP - VAR)模型,并结合了 Diebold - Yilmaz(DY)溢出指数的思想。在一个包含多个经济或金融变量的系统中,它能够捕捉变量之间的信息传递、波动溢出等动态关系。例如,在一个由股票市场指数、汇率、利率等多个金融变量构成的系统中,溢出指数可以衡量这些变量之间相互影响的程度。
-
变量维度:“高维” 意味着该方法可以处理多个变量的情况。与传统的双变量或低维变量分析方法不同,它能够同时考虑大量变量之间的相互关系。例如,在分析全球金融市场时,可能会涉及几十个国家的股票市场、债券市场、外汇市场等多种金融指标,高维多变量溢出指数就可以用于研究这些复杂的相互关系。
-
-
原理