论文报告:基于卷积神经网络的手术机器人控制系统设计
摘要
本研究针对传统手术机器人控制系统精准度不足的问题,提出了一种基于卷积神经网络的手术机器人控制系统设计。研究设计了控制系统的总体结构,并选用PCI插槽上直接内插CAN适配卡作为上位机核心组件。通过下位机的三个节点处理相关信号,并进行量程转换和越限判断,确保机器人不会失控。研究还设计了基于视觉的持镜臂,以提供手术过程中所需的视野,并采用FN3002力传感器和MPS-M拉线式位移传感器获取相关传感数据。通过卷积神经网络深度学习方法,设计了持镜臂运动控制步骤,并使用VC++6.0工具开发控制软件程序。实验结果表明,基于卷积神经网络的系统与期望规划值基本一致,拟合度达到100%,而传统系统与期望规划值相差较大,拟合度仅为20%。该系统的设计简化了控制系统的复杂性,并提高了手术机器人的控制精准度。
文献目的
本研究的目的是提高手术机器人的控制精准度,以减少手术过程中由于医生疲劳引起的手部抖动等危险因素,从而提高手术的安全性和质量。
研究问题
研究主要解决的问题是如何设计一个基于卷积神经网络的控制系统,以实现对手术机器人精准控制,并在实时控制系统下实现异构主从操作的主从映射。
使用的方法
研究采用了卷积神经网络(CNN)深度学习方法,通过构建视觉层和关节状态的数值相近的特征,实现了对手术机器人的精准控制。研究中还涉及到了硬件结构设计,包括适配卡的选择、持镜臂的设计以及传感器的应用。