YOLOv11 网络结构及YOLOv8 模型间性能对比(合适新人)

目录

YOLOv11 网络结构

主干网络(Backbone)

颈部网络(Neck)

头部网络(Head)

YOLOv11 有哪些新特性?

YOLOv11包含哪些模型?

YOLOv11 的性能数据

目标检测:

图像分割:

姿态估计:

旋转边界框:

图像分类:

YOLOv8 vs YOLOv11: 各模型性能比较

用于比较的关键指标

YOLOv8n 与 YOLOv11n:

YOLOv8s 与 YOLOv11s:

YOLOv8m 与 YOLOv11m

YOLOv8l 与 YOLOv11l

YOLOv8x 与 YOLOv11x

总结

网络结构与性能提升

算法改进与任务扩展

灵活部署与广泛应用


论文地址:

https://www.semanticscholar.org/reader/adccc00dbd0fe63e4e34bc3445a29bc2ec910cbc

代码地址:https://github.com/ultralytics/ultralytics

YOLOv11 网络结构

YOLO11采用改进的骨干和颈部架构,增强了特征提取能力,提高了物体检测的精确度和复杂任务的表现。相比较于YOLOv8模型,其将CF2模块改成C3K2,同时在SPPF模块后面添加了一个C2PSA模块,且将YOLOv10的head思想引入到YOLO11的head中,使用深度可分离的方法,减少冗余计算,提高效率。

图片

  • 主干网络(Backbone)

  • YOLO1增加了一个C2PSA模块,并且将C2f替换为了C3k2。相比于C2f,当超参数c3k=True时,瓶颈块替换为 C3k,否则还是C2f,而C3k相比于C3则是可以让使用者自定义卷积块大小,更加灵活。C2PSA扩展了C2f,通过引入PSA( Position-Sensitive Attention),旨在通过多头注意力机制和前馈神经网络来增强特征提取能力。它可以选择性地添加残差结构(shortcut)以优化梯度传播和网络训练效果。同时,使用FFN 可以将输入特征映射到更高维的空间,捕获输入特征的复杂非线性关系,允许模型学习更丰富的特征表示。

图片

  • 颈部网络(Neck)

  • YOLO11使用PAN结构,并在其中也使用了C3K2模块。这种结构设计有助于聚合来自不同尺度的特征,并优化特征的传递过程。C3K2模块其实就是C2F模块转变出来的,它代码中有一个设置,就是当c3k这个参数为FALSE的时候,C3K2模块就是C2F模块,也就是说它的Bottleneck是普通的Bottleneck;反之当它为true的时候,将Bottleneck模块替换成C3模块。

图片

  • 头部网络(Head)

图片

YOLOv11 有哪些新特性?

2024年9月30日,Ultralytics在他们的YOLOVision活动上正式发布了YOLOv11。YOLOv11是由位于美国和西班牙的Ultralytics团队开发的YOLO模型的最新迭代版本。YOLOv11带来了大量改进,包括但不限于以下几点:

  1. 模型架构的增强:模型的架构经过优化,更好地处理输入图像并进行预测。通过改进的架构,模型在图像处理和推理阶段表现更加高效。

  2. GPU优化:符合现代机器学习模型的趋势,YOLOv11在GPU上进行了优化训练。与之前版本相比,GPU训练不仅提高了模型的训练速度,还显著提升了模型的精度。

  3. 速度提升:没错,速度是YOLOv11的一大亮点。通过GPU优化和架构改进,YOLOv11的训练和推理速度比以往版本快得多,延迟减少高达25%。

  4. 参数减少:模型参数的减少使得YOLOv11运行更加高效,速度更快,同时保持高精度,几乎不影响准确性。

  5. 更强的适应性和更多支持任务:YOLOv11支持更多类型的任务、更多种类的目标检测和处理更多不同类型的图像。这使得YOLOv11的应用场景更加广泛,几乎可以胜任任何图像识别任务。

YOLOv11 提供了多个模型,涵盖了以下功能:

  1. 目标检测:经过训练后,能够检测图像中的目标物体。
  2. 图像分割:不仅能够进行目标检测,还能将图像中的物体进行精确分割。
  3. 姿态估计:通过训练后可以绘制人体姿态,使用点和线来标识关节和肢体。
  4. 旋转边界框(OBB):与目标检测类似,但边界框可以进行旋转,适用于具有方向性的物体检测。
  5. 图像分类:经过训练后能够对图像进行类别分类。

YOLOv11包含哪些模型?

YOLOv11包括以下模型:

  • 边界框检测模型(无后缀)
  • 实例分割模型(后缀 -seg)
  • 姿态估计模型(后缀 -pose)
  • 旋转边界框模型(后缀 -obb)
  • 图像分类模型(后缀 -cls)

这些模型还分为不同的尺寸版本:Nano (n)、Small (s)、Medium (m)、Large (l)、Extra-Large (x)。

img

YOLOv11 的性能数据

目标检测:

image-20241018144622027

image-20241018144642763

从数据来看,Nano 模型在 YOLOv11 上的 mAPval 为 39.5,而在 YOLOv10 上也是 39.5;Small 模型分别为 47.0 对 46.8;Medium 模型是 51.5 对 51.3;Large 模型在两个版本中均为 53.4;Extra Large 模型为 54.7 对 54.4。这些看似细微的提升,尤其是 mAPval 上的小数点增长,在机器学习模型中往往能带来显著的性能提升。总的来说,YOLOv11 在 mAPval 上超越了 YOLOv10 约 0.3。

接下来我们来看看速度。在延迟方面,Nano 模型在 YOLOv11 上的延迟为 1.55,而在 YOLOv10 上是 1.84;Small 模型分别为 2.46 对 2.49;Medium 模型是 4.70 对 4.74;Large 模型为 6.16 对 7.28;而 Extra Large 模型则为 11.31 对 10.70。延迟越低越好,除了 Extra Large 模型表现稍差之外,YOLOv11 其他尺寸的延迟都比前代低。

总体而言,Nano 模型在速度方面表现极佳,同时性能相当。而 Extra Large 模型尽管性能有所提升,但延迟表现不佳。

图像分割:

image-20241018144737278

image-20241018144709805

image-20241018144743181

总的来看,YOLOv11 的图像分割模型在 Large 和 Extra Large 模型上相比之前的 YOLOv8 和 YOLOv9 表现更优。YOLOv9 并没有提供延迟方面的统计数据,而 YOLOv11 相比 YOLOv8 的延迟大幅降低。YOLOv11 还引入了大量的 GPU 优化,因此在 CPU 测试的基准之外,GPU 上的速度预计会更快。

姿态估计:

image-20241018144806687

image-20241018144816742

YOLOv11 在 mAP50–95 的统计数据上较 YOLOv8 有小幅提升(Large 模型除外)。然而在速度方面,YOLOv11 的姿态估计模型在延迟上有显著改善,某些延迟数据甚至是前代的四分之一!由于这些模型是针对 GPU 训练优化的,因此预计实际性能会比展示的数据更好。

旋转边界框:

img

img

在 mAP50 的统计数据上,旋转边界框模型的提升相对较小,甚至比目标检测的细微改进还要少。然而,YOLOv11 在速度上却提升了一倍,显示出 YOLOv11 为提升速度做出了巨大努力。

图像分类:

img

img

在精度上,从 YOLOv8 到 YOLOv11 的改进微乎其微,但在速度上,YOLOv11 模型在 CPU 上的表现有了巨大的提升。

YOLOv8 vs YOLOv11: 各模型性能比较

用于比较的关键指标

  1. **模型版本(n、s、m、l、x):

    Ultralytics 开发的 YOLO 模型有不同的尺寸,即纳米(n)、小(s)、中(m)、大(l)和超大(x)较大的模型往往更复杂、更强大,但它们也需要更多资源并且运行速度较慢。**

  2. mAP(平均精度):
    mAP分数告诉我们模型检测物体的准确度。*计算基于模型识别与图像中实际物体不同重叠度的物体的能力。平均精度 (mAP) 越高,表示模型的准确度越高,表明其检测和准确定位图像中物体的能力越强。*

  3. 速度(以毫秒为单位):
    速度告诉我们模型处理图像的速度。速度有两种类型,
    *CPU 速度:这衡量了它在普通计算机处理器 (CPU) 上的运行速度;
    GPU 速度:这衡量了它在特定 NVIDIA GPU(例如 A100 或 T4)上的运行速度,这些 GPU 通常用于高性能 AI 任务。*

  4. Params(M):
    表示特定模型的参数数量(以百万为单位)。模型越大,参数越多。

  5. FLOPs(B):
    FLOPs(浮点运算)表示模型的计算复杂度。FLOP 越高,表示模型需要的计算资源越多。*以十亿为单位。*

YOLOv8n 与 YOLOv11n:

image-20241018145039174

最小、最快、参数最少的模型:

  1. 性能:YOLOv11n 在精度上超越了 YOLOv8n,平均精度(mAP)为 39.5,而 YOLOv8n 为 37.3,表明 YOLOv11n 在图像中的目标检测能力更强。

  2. 速度:在标准 CPU 上,YOLOv11n 的运行速度更快,延迟为 56.1 毫秒,但在高性能 GPU 上则略微较慢。

  3. 效率:YOLOv11n 在保持较高精度的同时,使用了更少的参数和更低的浮点运算次数(FLOPs),展现出比 YOLOv8n 更高的效率。

YOLOv8s 与 YOLOv11s:

img

这些模型稍大,旨在平衡速度和精度:

  1. 性能:YOLOv11s 在精度方面优于 YOLOv8s,平均精度(mAP)为 47.0,而 YOLOv8s 为 44.9,因此在需要高精度的场景下,YOLOv11s 是更好的选择。

  2. 速度:YOLOv11s 在 CPU 上表现出色,而 YOLOv8s 则在诸如 A100 等高性能 GPU 上表现更快。

  3. 效率:由于 YOLOv11s 的参数数量更少且计算需求更低,它能够以较少的计算资源提供更高的精度,展示出更高的效率。

YOLOv8m 与 YOLOv11m

img

中型模型在小型和大型版本之间提供了折衷选择:

  1. 性能:YOLOv11m 在精度上相比 YOLOv8m 有轻微的提升。

  2. 速度:YOLOv11m 在 CPU 上的运行速度更快,但在 GPU 上的表现较慢,这可能会影响其在特定应用中的表现。

  3. 效率:YOLOv11m 使用了较少的参数和浮点运算次数(FLOPs),同时保持了更高的精度,突显了其在任务管理中的高效性。

YOLOv8l 与 YOLOv11l

img

这些大型模型专为需要精度优先于速度的任务而设计:

  1. 性能:尽管精度差异较小,YOLOv11l 仍保持着轻微的优势。

  2. 速度:YOLOv11l 在 CPU 上表现更快,但在 GPU 上的速度明显较慢。

  3. 效率:YOLOv11l 在资源消耗更少的情况下取得了更好的结果,拥有更少的参数和浮点运算次数(FLOPs),仍然超越了 YOLOv8l。

YOLOv8x 与 YOLOv11x

img

超大型模型是最为精确的,但也消耗最多的资源:

  1. 性能:YOLOv11x 的精度略微超越了 YOLOv8x,尽管优势不大。

  2. 速度:YOLOv11x 在 CPU 和 GPU 上的表现较慢,优先考虑精度而非速度。

  3. 效率:YOLOv11x 在完成相同任务时消耗了更少的资源,使用显著更少的浮点运算次数(FLOPs)和参数,同时实现了更高的精度。

总结

YOLO11算法提高了检测精度和效率。在有很多物体的视频中,YOLO11的检测效果更好,甚至可以检测到领带等细小物品。

  • 网络结构与性能提升

YOLO11通过引入C3K2、C2PSA等模块,增强了特征提取能力,提高了检测精度。同时,采用深度可分离卷积等方法优化计算效率,实现了更快的处理速度和更高的性能。这使得YOLO11在多种计算机视觉任务中表现出色,尤其在复杂场景中更具优势。

  • 算法改进与任务扩展

YOLO11在算法层面进行了多项优化,包括增强的特征提取、优化的训练流程等,进一步提升了模型的准确性和效率。此外,它还支持多种计算机视觉任务,如实例分割、图像分类等,满足了更广泛的应用需求。

  • 灵活部署与广泛应用

YOLO11具有良好的环境适应性,可以在边缘设备、云平台等多种环境中部署。其高效的计算性能和广泛的应用场景,使得YOLO11成为实时目标检测领域的佼佼者,为科研和商业应用提供了有力支持。

### YOLOv11n 和 YOLOv11s 的区别与特点 YOLO (You Only Look Once) 是一种广泛应用于目标检测的深度学习框架。然而,在当前已知的信息中,并不存在名为 **YOLOv11n** 或 **YOLOv11s** 的具体版本[^1]。通常情况下,YOLO 的版本迭代是以清晰的编号命名方式呈现,例如 YOLOv1、YOLOv2(也称为 YOLO9000)、YOLOv3、YOLOv4、YOLOv5 等。 如果假设这是某种特定场景下的变体或者自定义实现,则可以从以下几个方面推测它们可能存在的差异: #### 1. 模型大小 - 如果 “n” 表示较小规模模型,“s” 可能代表标准版或其他更大一些的基础架构。这种命名习惯常见于其他机器学习库中,比如 EfficientNet-Bn 系列中的 B0 到 B7,分别对应不同复杂度和参数量的网络结构。 #### 2. 参数数量与计算成本 - 假设 YOLOv11n 被设计成轻量化版本用于嵌入式设备或移动平台部署时,其 FLOPs(浮点运算次数)以及内存占用都会显著低于常规尺寸型号即所谓的 YOLOv11s 版本[^2]。 #### 3. 性能对比 - 对于精度而言,理论上更复杂的体系结构能够提供更高的 mAP(mean Average Precision),但同时也意味着训练时间延长及推理速度减慢;而简化后的紧凑型则侧重实时处理能力牺牲部分识别准确性作为权衡策略之一[^3]。 以下是基于假定条件的一个简单 Python 实现片段展示如何加载预训练权重文件并执行预测操作: ```python import torch from models import yolov11n, yolov11s # Hypothetical module names def load_model(version='n'): if version == 'n': model = yolov11n() elif version == 's': model = yolov11s() else: raise ValueError("Unsupported YOLO version") checkpoint = f'yolov11{version}_weights.pth' state_dict = torch.load(checkpoint) model.load_state_dict(state_dict) return model.eval() model_n = load_model('n') output_n = model_n(torch.randn(1, 3, 416, 416)) print(output_n.shape) ``` 尽管如此,请确认实际项目文档资料来获取最权威解释说明!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值