论文报告:基于YOLOv5s的农田垃圾轻量化检测方法
基于YOLOv5s的农田垃圾轻量化检测方法
摘要
本研究针对农田垃圾检测算法在复杂环境下检测精度不高、检测效率低和模型复杂的问题,提出了基于YOLOv5s的农田垃圾轻量化检测方法。通过引入轻量级分类网络ShuffleNetV2的构建单元作为特征提取网络,降低了模型的计算量和参数量,提高了运行速度。同时,对ShuffleNetV2的构建单元进行了卷积核扩大化改进和激活函数优化,提高了模型精度。此外,针对边界框损失函数进行了优化,提高了模型的收敛速度和回归精度。试验结果显示,改进模型检测精度达到90.9%,检测速度为74ms/帧,计算量仅为3.6GFLOPs,与主流目标检测算法相比,具有更优越的检测精度和推理速度,同时大幅减少了计算量。最终,将改进模型部署到Jetson TX1和Raspberry 4B两种边缘计算设备上,检测速度相对原模型提高了至少20%,保持了较好的检测效果。
国内外研究现状
1. 农田垃圾检测的必要性
- 国内外研究均指出农田垃圾对土壤环境和水质造成严重破坏,智能分拣技术的发展对于遏制生态破坏、保障农业可持续发展具有重要意义。
2. 传统农田垃圾分拣方法
- 目前农田垃圾分拣依赖人工,存在工作强度大、效率低等问题。
3. 智能分拣技术的发展
- 随着智慧农业和人工智能技术的发展,农田垃圾智能分拣技术逐渐成为研究热点。
4. 深度学习在垃圾检测中的应用
- 深度学习理论的发展和软硬件性能的提升使得卷积神经网络被广泛应用于垃圾检测领域。
研究目的
本研究旨在提出一种适用于复杂农田环境的轻量化农田垃圾检测方法,以提高检测精度和效率,降低模型复杂度,满足移动端应用的要求。