作用:yolo训练前需要自己等比例划分数据集
条件:标注文件是TXT格式
设置目录路径:
“”"
训练集:验证集:测试集 (第73行,自己定比例)
自建yolo原始图片的文件夹(第71行)
自建yolo原始标签xtx的文件夹(第70行)
另存放划分比例后的文件夹(第15行)
“”"
主要是修改这四个地方即可,话不多说 ,咱们直接附代码
"""
条件为标注文件是TXT格式
训练集:验证集 (第73行,自己定比例)
自建yolo原始图片的文件夹(第70行)
自建yolo原始标签TXT的文件夹(第71行)
另存放划分比例8:2后的文件夹(第17行)
"""
import os
import shutil
import random
from tqdm import tqdm
def split_img(img_path, label_path, split_list):
try: # 创建数据集文件夹
# Data = 'F:/data7_potato/dataest' # 另存放划分比例后的文件夹
Data = 'F:/data16/dataest' # 另存放划分比例后的文件夹
train_img_dir = Data + '/images/train'
val_img_dir = Data + '/images/val'
test_img_dir = Data + '/images/test'
train_label_dir = Data + '/labels/train'
val_label_dir = Data + '/labels/val'
test_label_dir = Data + '/labels/test'
# 创建文件夹
os.makedirs(train_img_dir, exist_ok=True)
os.makedirs(train_label_dir, exist_ok=True)
os.makedirs(val_img_dir, exist_ok=True)
os.makedirs(val_label_dir, exist_ok=True)
os.makedirs(test_img_dir, exist_ok=True)
os.makedirs(test_label_dir, exist_ok=True)
except:
print('文件目录已存在')
total_imgs = os.listdir(img_path)
total_img_path = [os.path.join(img_path, img) for img in total_imgs]
total_labels = [toLabelPath(img, label_path) for img in total_img_path]
total_size = len(total_imgs)
train_size = int(split_list[0] * total_size)
val_size = int(split_list[1] * total_size)
test_size = total_size - train_size - val_size
train_img_idx = random.sample(range(total_size), train_size)
val_img_idx = random.sample([i for i in range(total_size) if i not in train_img_idx], val_size)
test_img_idx = [i for i in range(total_size) if i not in train_img_idx + val_img_idx]
for idx in tqdm(train_img_idx, desc='train ', ncols=80, unit='img'):
shutil.copy(total_img_path[idx], train_img_dir)
shutil.copy(total_labels[idx], train_label_dir)
for idx in tqdm(val_img_idx, desc='val ', ncols=80, unit='img'):
shutil.copy(total_img_path[idx], val_img_dir)
shutil.copy(total_labels[idx], val_label_dir)
for idx in tqdm(test_img_idx, desc='test ', ncols=80, unit='img'):
shutil.copy(total_img_path[idx], test_img_dir)
shutil.copy(total_labels[idx], test_label_dir)
def toLabelPath(img_path, label_path):
img = os.path.basename(img_path)
label = img.split('.jpg')[0] + '.txt'
return os.path.join(label_path, label)
if __name__ == '__main__':
# img_path = 'F:/data7_potato/images' # 自建yolo原始图片的文件夹
img_path = 'F:/data16/images'
label_path = 'F:/data16/labels' # 自建yolo原始标签TXT的文件夹
# label_path = 'F:/data7_potato/labels' # 自建yolo原始标签TXT的文件夹
split_list = [0.8, 0.1] # 训练集:验证集:测试集(8:1:1)自己定数据集的划分比例[train:val:test]
split_img(img_path, label_path, split_list)

2171

被折叠的 条评论
为什么被折叠?



