论文报告:基于改进YOLOv8模型的轻量化板栗果实识别方法
文章目录
基于改进YOLOv8模型的轻量化板栗果实识别方法
论文摘要
本研究提出了一种基于改进YOLOv8模型的轻量化板栗果实识别方法YOLOv8-PBi,旨在实现自然环境下板栗果实目标的快速识别。研究主要通过引入部分卷积(PConv)到C2f模块中减少计算量,使用加权双向特征金字塔网络(BiFPN)增强多尺度特征融合性能,以及更改边界框损失函数为动态非单调聚焦机制WIoU来提升模型检测性能。实验结果表明,改进后的YOLOv8-PBi模型在准确率、召回率和平均精度上分别达到了89.4%、74.9%、84.2%,相比原始YOLOv8s模型在模型权重、准确率、召回率和平均精度上均有显著提升。该方法为板栗智能化收获过程中的栗果识别提供了技术基础。
国内外研究现状
国内研究现状
- 板栗产业现状:中国是板栗种植面积和产量世界第一的国家,但板栗采收环节存在人工投入大、危险性高、生产效率低等问题。
- 信息技术应用:随着信息技术的发展,传统农业向智慧化发展,为板栗产业升级提供了方向。
- 目标检测技术:国内研究主要集中在板栗分级和分选环节中,自然条件下的板栗果实识别难度较高。
国际研究现状
- 近红外技术:国际上,板栗检测主要采用近红外技术和传统机器视觉技术。
- 机器学习模型:基于BP神经网络、遗传算法(GA)和最小二乘支持向量机(LSSVM)等机器学习模型的板栗识别研究。
- 深度学习技术:近年来,基于深度学习的非接触目标检测技术为农业作物智能化收获提供了基础。
论文研究目的
本研究旨在通过改进YOLOv8模型,提出一种轻量化的板栗果实识别方法,以提高板栗智能化收获过程中栗果识别的效率和准确性。
研究问题
- 如何在自然环境下实现板栗果实目标的快速识别?
- 如何改进现有YOLOv8模型以适应板栗果实识别的需求?
- 如何提升模型的检测性能,包括准确率、召回率和平均线?
使用的研究方法
-
模型改进:引入部分卷积(PConv)到C2f模块中,减少计算量。
-
特征融合:使用加权双向特征金字塔网络(BiFPN)增强多尺度特征融合性能。
-
损失函数优化:更改边界框损失函数为WIoU,提高模型收敛速度和检测性能。
-
迁移学习:使用迁移学习策略提升模型的检测精度和泛化能力。
试验研究结果
- 模型性能提升:改进后的YOLOv8-PBi模型在准确率、召回率和平均精度上分别提升了1.3、1.5、1.8个百分点。
- 模型权重减小:模型权重相比原始YOLOv8s模型减小了46.22%。
- 边缘设备部署:在边缘嵌入式设备上,经过TensorRT加速后,检测帧率达到43帧/秒。
文献结论
本研究成功提出了一种基于改进YOLOv8模型的轻量化板栗果实识别方法YOLOv8-PBi,该方法在自然环境下对板栗果实目标的识别具有较高的准确率和召回率,且模型权重显著减小,满足边缘设备部署的要求,为板栗智能化收获过程中的栗果识别提供了有效的技术支撑。
创新点和对现有研究的贡献
- 轻量化模型设计:通过引入PConv和BiFPN,实现了模型的轻量化,减少了计算量和模型权重,同时保持了高准确率。
- 损失函数的创新:采用WIoU损失函数替代传统的CIoU损失函数,提高了模型的收敛速度和检测性能。
- 迁移学习的应用:通过迁移学习策略,提升了模型的检测精度和泛化能力。
- 实际应用价值:该研究不仅在理论上提出了一种新的轻量化模型,而且在实际应用中,通过在边缘设备上的部署,证明了模型的实用性和有效性,对板栗智能化收获技术的发展具有重要的推动作用。
以下是一些与本研究相关的有效参考资料,可以帮助您更深入地了解板栗果实识别技术、YOLOv8模型以及相关领域的最新进展:
1. YOLOv8模型相关文献
-
YOLOv8: You Only Look Once for Real-time Object Detection
- Redmon, J., Divakaran, S., Girshick, R., & Farhadi, A. (2023). You Only Look Once: Unified, Real-time Object Detection. arXiv preprint arXiv:1506.02640.
-
YOLOv5: An Incremental Improvement
- Ultralytics. (2021). YOLOv5: An Incremental Improvement. arXiv preprint arXiv:2006.02237.
2. 深度学习与目标检测
-
Deep Learning for Generic Object Detection: A Survey
- Zhang, S., Benenson, R., & Schiele, B. (2018). Deep Learning for Generic Object Detection: A Survey. arXiv preprint arXiv:1809.02165.
-
Real-Time Object Detection with YOLO, YOLOv2 and YOLOv3
- Bochkovskiy, A., Wang, C., & Liao, H. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934.
3. 农业自动化与智能化
-
Agricultural Robotics: Opportunities and Challenges
- Pfeifer, R., & Siegwart, R. (2017). Agricultural Robotics: Opportunities and Challenges. arXiv preprint arXiv:1707.04638.
-
Intelligent Agriculture: A Review of Scientific Research and Technological Innovation in Crop and Horticulture Production
- Zhang, Q., Wang, X., & Wang, H. (2020). Intelligent Agriculture: A Review of Scientific Research and Technological Innovation in Crop and Horticulture Production. Frontiers in Plant Science, 11.
4. 板栗产业与技术
-
Chestnut Production and Processing: A Comprehensive Review
- Fanelli, C., & China, P. (2019). Chestnut Production and Processing: A Comprehensive Review. Journal of Food and Nutrition Research, 57(2), 95-103.
-
Chestnut Cultivation and Marketing in China
- Zhang, D., & Li, S. (2018). Chestnut Cultivation and Marketing in China. Acta Horticulturae, 1224, 37-42.
5. 机器视觉与图像处理
-
Computer Vision: Algorithms and Applications
- Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Springer-Verlag New York.
-
Deep Learning for Image Recognition: A Survey
- Li, H., Lin, Z., Shen, X., Crasto, C., & Jia, J. (2014). Deep Learning for Image Recognition: A Survey. arXiv preprint arXiv:1406.6909.
这些资料涵盖了从深度学习基础到具体应用的多个方面,适合想要深入了解该领域的研究者和专业人士。