【Numpy学习 06】副本与视图

本文详细介绍了Numpy中数组副本与视图的区别。`numpy.ndarray.copy()`函数用于创建数组副本,修改副本不会影响原始数据。而数组切片操作返回的是原数组的视图,对视图的修改会直接影响原始数组。通过示例代码演示了两者的不同,强调了在进行数组操作时理解副本与视图的概念的重要性。
摘要由CSDN通过智能技术生成

在 Numpy 中,尤其是在做数组运算或数组操作时,返回结果不是数组的 副本 就是 视图
在 Numpy 中,所有赋值运算不会为数组和数组中的任何元素创建副本。

1. numpy.ndarray.copy() 函数

函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x  #赋值
y[0] = -1

print(x)
# [-1 2 3 4 5 6 7 8]
print(y)
# [-1 2 3 4 5 6 7 8]

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = x.copy()
y[0] = -1

print(x)
# [1 2 3 4 5 6 7 8]
print(y)
# [-1 2 3 4 5 6 7 8]

2. 视图

数组切片操作返回的对象只是原数组的视图。

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])

y = x
y[::2, :3:2] = -1
print(x)

print(y)

输出:
在这里插入图片描述
可以发现x和y均已改变

x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])

y = x.copy()  #副本
y[::2, :3:2] = -1
print(x)

print(y)

输出:
在这里插入图片描述
可以看到x未变化,而y值已经改变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值