大模型
文章平均质量分 79
结合点点滴滴的大模型知识点,逐步实践,进入大模型的世界。
依旧阳光的老码农
近20年Delphi、C++开发经验,历经程序员、研发经理、项目经理、产品经理各个角色;承接各种软件开发项目、编程指导业务;编程语言擅长Delphi、C++、Python、NodeJS、Java、Groovy。
展开
-
YOLOv8安装步骤
Conda 是 pip 的替代软件包管理器,也可用于安装。更多详情请访问 Anaconda:https://anaconda.org/conda-forge/ultralytics。Ultralytics 用于更新 conda 软件包的 feedstock 资源库位于https://github.com/conda-forge/ultralytics-feedstock/。原创 2024-09-10 12:03:27 · 1079 阅读 · 0 评论 -
YOLOv8 初步体验
YOLOv8 提供了一个高度灵活且易于使用的框架,支持多种视觉任务。无论你是想进行目标检测、实例分割还是图像分类,YOLOv8 都是一个强大的工具。通过上述步骤,你可以快速入门并开始使用 YOLOv8 来解决你的计算机视觉问题。原创 2024-09-02 07:10:38 · 1024 阅读 · 0 评论 -
大模型开发工具——PyTorch 简介
PyTorch 是一个强大且灵活的深度学习框架,非常适合研究和生产环境。它提供了动态计算图、自动求导、丰富的 API 和强大的 GPU 加速功能,使得开发者能够快速构建和训练复杂的模型。无论是学术研究还是工业应用,PyTorch 都是一个值得信赖的选择。原创 2024-09-02 09:00:00 · 770 阅读 · 0 评论 -
YOLO系列模型简介
YOLO系列模型因其实时检测能力和较高的准确率而在计算机视觉领域受到了广泛的关注和应用。随着版本的演进,YOLO模型不断吸收新的技术和设计理念,努力在速度与精度之间寻找最佳平衡点。无论是学术研究还是工业应用,YOLO系列模型都占据了重要的地位。早期版本(YOLOv1 至 YOLOv3):使用C/C++和CUDA,基于Darknet框架。近期版本(YOLOv4 及以后):使用Python语言,并基于PyTorch深度学习框架。原创 2024-09-01 09:30:00 · 878 阅读 · 0 评论 -
使用Python 访问Neo4J 数据库
在Python 中访问Neo4J原创 2024-08-24 15:00:00 · 1119 阅读 · 0 评论 -
使用Neo4j CQL 在Neo4J中创建知识图谱概念中的示意图
感受Cypher原创 2024-08-24 13:30:00 · 405 阅读 · 0 评论 -
Neo4j - CQL简介
Neo4j 支持在 Neo4j CQL WHERE 子句中使用以下布尔运算符来支持多个条件。它是一个支持 AND 操作的 Neo4j CQL 关键字。它是一个支持 NOT 操作的 Neo4j CQL 关键字。它是一个支持 XOR 操作的 Neo4j CQL 关键字。它是一个支持 OR 操作的 Neo4j CQL 关键字。Neo4j 支持在 Neo4j CQL WHERE 子句中使用以下比较运算符来支持条件。这与 match 相同,唯一的区别是它可以在缺少模式部分的情况下使用 null。原创 2024-08-23 18:53:08 · 697 阅读 · 0 评论 -
第一次运行Neo4J
它在数据库中创建一个带有标签名“Employee”的节点“emp”它创建一个具有一些属性(键值对)的节点来存储数据。这里我创建一个简单的“Employee”节点,在数据浏览器中的命令框(美元提示符下)键入以下命令。创建具有一些属性(id,name,sal,deptno)的Employee节点,在命令框中输入。现在创建具有一些属性(deptno,dname,位置)的Dept节点,在命令框中输入。在图形区域用鼠标点击不同的节点(带颜色的圆),在右侧即可看到相应的属性。定义将分配给创建节点的属性的名称。原创 2024-08-23 18:51:32 · 1078 阅读 · 0 评论 -
Neo4J下载安装
neo4j安装说明原创 2024-08-23 12:49:26 · 2224 阅读 · 1 评论 -
Neo4j 数据库介绍
Neo4j 是一个强大的图数据库系统,适用于需要高效处理复杂关系数据的应用场景。它提供了丰富的功能和工具,使开发者能够构建高度可扩展和高性能的应用程序。如果您计划使用 Neo4j 来解决特定问题,请告诉我,我可以提供更具体的指导和建议。来源:通义千问。原创 2024-08-23 12:47:45 · 804 阅读 · 0 评论 -
图数据库的概念
安全且高性能的多模型(混合)关系数据库管理系统(RDBMS),支持SQL和SPARQL,用于对建模为SQL表和/或RDF图的数据进行声明(数据定义和数据操作)操作。还支持从多种文档类型(包括CSV,XML和JSON)索引RDF-Turtle,RDF-N-Triples,RDF-XML,JSON-LD以及映射和生成关系(SQL表或RDF图)。图数据库将数据之间的关系作为优先级。大多数基于非关系存储引擎的图数据库还添加了标记或属性的概念,这些标记或属性本质上是具有指向另一个文档的指针的关系。原创 2024-08-23 12:45:59 · 1079 阅读 · 0 评论 -
知识图谱的基本概念
知识图谱(英语:Knowledge Graph),是结构化的语义知识库,用于以符号形式描述物理世界中的概念及其相互关系。其基本组成单位是“实体-关系-实体”三元组,以及实体及其相关属性-值对,实体间通过关系相互联结,构成网状的知识结构。知识图谱可以实现Web从网页链接向概念链接转变,支持用户按主题而不是字符串检索,真正实现语义检索。基于知识图谱的搜索引擎,能够以图形方式向用户反馈结构化的知识,用户不必浏览大量网页即能准确定位和深度获取知识。[1]示例图在知识表示中,知识图谱是一种知识库,其中的数据通过。原创 2024-08-23 12:42:38 · 885 阅读 · 0 评论