YOLO(You Only Look Once)系列模型是用于目标检测的一组深度学习模型,以其快速且高效的特点著称。该系列模型由Joseph Redmon等人开发,自2016年的YOLOv1发布以来,已经经历了多个版本的迭代和发展,包括YOLOv2、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7及最新的YOLOv8等。每个版本都在前一代的基础上进行了改进和优化,提升了模型的速度和准确性。
一、基本情况
YOLOv1 (2016)
- 特点:YOLOv1首次提出了实时目标检测的概念,通过一个单一的神经网络,在一张图像上完成目标定位和分类的任务。
- 架构:将输入图像分割成SxS网格,每个网格负责检测该区域内中心点落在此网格内的物体。
- 优点:实时性好,速度快。
- 缺点:对于小物体和密集物体的检测效果较差。
YOLOv2 (2017)
- 特点:引入了批处理标准化(Batch Normalization)来提高收敛速度,并使用了高分辨率分类器来帮助检测小物体。
- 架构:增加了锚点框(anchor boxes)来提高检测精度,同时引入了多尺度训练来增强模型的泛化能力。
- 优点:检测精度提高,仍然保持了较快的速度。
YOLOv3 (2018)
- 特点:进一步提高了检测精度,特别是在小物体检测方面有所改进。
- 架构:采用了类似FPN(Feature Pyramid Network)的设计,通过多尺度特征融合来检测不同大小的物体。
- 优点:在保持速度的同时,显著提升了检测精度。
YOLOv4 (2020)
- 特点:集成了许多先进的技术,如CSPNet、Mish激活函数、SPP模块等,旨在最大化检测性能。
- 架构:使用了改进的骨干网络CSPDarknet53,并加入了注意力机制来增强