一、环境准备
首先,确保环境中已经安装相关依赖,你需要安装 Hugging Face 的 transformers 和 trl 库,如果还没有安装,可以使用以下命令:
pip install transformers trl
二、数据准备
根据单轮对话和多轮对话的需求,你需要选择合适的数据集,并将其处理为 DPO 所需的格式。
单轮对话
1、选择数据集:lvwerra/stack-exchange-paired
2、下载数据集:可以使用 Hugging Face 的 datasets 库来加载数据集:
from datasets import load_dataset
dataset = load_dataset('lvwerra/stack-exchange-paired')
3、数据格式:将数据处理为 DPO 所需的格式。通常,DPO 需要一个包含对话对和相应偏好标签的数据集。
多轮对话
三、配置DPO训练
1、配置文件
你需要配置 DPO 的训练参数,包括模型配置、训练设置等。以下是一个基本的配置示例(通常保存在 YAML 文件中):
model:
name_or_path: "Qwen2" # 替换为 Qwen2 的模型路径或名称
bos_token_id: 0 # 设置 bos_token_id,如果模型没有此 token
training:
output_dir: "./output"
per_device_train_batch_size: 8
per_device_eval_batch_size: 8
num_train_epochs: 3
logging_dir: "./logs"
logging_steps: 10
evaluation_strategy: "steps"
save_strategy: "epoch"
dpo:
draw_threshold: 0.25
# 其他 DPO 特定配置
创建 DPO 训练器
from trl import DPOTrainer
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
# 加载模型和 tokenizer
model_name = "Qwen2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# 加载数据集
dataset = load_dataset('lvwerra/stack-exchange-paired')
# 配置 DPO 训练
dpo_trainer = DPOTrainer(
model=model,
args=train_args, # 训练参数从 YAML 文件中加载
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
tokenizer=tokenizer
)
# 执行训练
dpo_trainer.train()
四、执行训练
在配置完成后,你可以运行训练脚本来微调模型:
python train_dpo.py --config_path path/to/your/config.yaml
五、评估和保存模型
训练完成后,你可以评估模型的性能,并保存微调后的模型:
# 保存模型
model.save_pretrained("./output")
# 评估模型
results = dpo_trainer.evaluate()
print(results)