文章目录
- 一、基础知识
- 1. 大语言模型的类型有哪些
- 2、什么是大语言模型(LLM)?
- 3、LLM通常基于那种网络架构?
- 3、大模型为何普遍采用Transformer而非RNN?在处理长文本时具体优势是什么?
- 4、LLM 的主要训练目标是什么?
- 5、什么是“预训练-微调”范式?
- 6、LLM 的典型输入和输出是什么?
- 7、Transformer 架构的核心机制是什么?
- 7、自注意力机制如何动态衡量输入序列中每个词的重要性?能否举例说明?
- 7、多头注意力机制中“头数”参数对模型性能的影响有哪些实际案例?
- 7、为什么说Transformer的并行计算能力是大模型训练效率的关键?
- 8、LLM 中的“位置编码”作用是什么?
- 9、什么是“参数量”在 LLM 中的意义?
- 10、训练 LLM 需要哪些资源?
- 11、LLM 如何处理长文本输入?
- 12、LLM 可以应用于哪些任务?
- 13、什么是“零样本学习”在 LLM 中的应用?
- 14、LLM 如何用于代码生成?
- 15、LLM 在医疗领域的应用有哪些?
- 16、LLM 如何支持多语言处理?
- 17、什么是“幻觉”问题?
- 18、LLM 如何处理偏见问题?
- 19、LLM 的输出如何进行评估?
- 20、LLM 在法律领域的应用挑战有哪些?
- 21、LLM 的环境影响是什么?
- 22、GPT-4的1.8万亿参数与LLaMA-3的650亿参数在推理成本上有何差异?
- 23、参数规模扩大是否必然导致性能提升?是否存在边际效应递减的场景?
- 24、稀疏激活技术(如MoE)如何通过动态路由降低大模型计算开销?
- 25、参数高效微调(PEFT)方法(如LoRA)如何平衡性能与部署成本?
- 26、Scaling Law是否适用于所有大模型?在多模态模型中是否依然成立?
- 27、预训练阶段的数据清洗策略如何影响模型偏见?以医疗数据为例说明。
- 28、人类反馈强化学习(RLHF)在对话系统中的具体实施步骤是什么?
- 29、模型量化(如INT8)对推理速度和准确率的权衡在金融风控场景中如何体现?
- 30、智能客服系统如何通过大模型实现多轮对话的上下文理解?
- 31、代码生成工具(如GitHub Copilot)如何利用大模型减少开发者重复劳动?
- 32、情感分析模型在社交媒体舆情监测中的误判率通常是多少?如何优化?
- 33、文本摘要模型在新闻聚合平台中如何避免关键信息丢失?
- 34、医学影像诊断中,大模型如何区分CT图像中的微小结节与伪影?
- 35、自动驾驶场景中,视觉-语言模型(VLM)如何处理复杂路况描述?
- 36、图像生成模型(如Stable Diffusion)在广告设计中的版权争议如何解决?
- 37、目标检测模型在安防监控中如何平衡误报率与实时性?
- 38、多模态搜索(如Pinterest)如何通过图文匹配提升用户点击率?
- 39、语音-文本双向转换在智能音箱中的延迟通常控制在多少毫秒以内?
- 40、图文生成技术(如DALL·E 3)在电商场景中如何降低商品描述成本?
- 41、视频内容分析(如动作识别)在体育赛事直播中的准确率要求是多少?
- 42、使用TPU v4芯片训练千亿参数模型时,如何优化内存占用?
- 43、模型蒸馏技术(Knowledge Distillation)在移动端部署中的压缩比能达到多少?
- 44、分布式训练框架(如DeepSpeed)如何解决多GPU通信瓶颈?
- 45、模型即服务(MaaS)平台(如Hugging Face)如何实现多模型动态调度?
- 46、合成数据(Synthetic Data)在医疗影像训练中的有效性验证方法是什么?
- 47、弱监督学习(Weakly-Supervised Learning)如何减少标注成本?
- 48、数据增强技术(如CutMix)在目标检测任务中的参数调优经验?
- 49、多语言数据集(如mC4)如何平衡不同语种的覆盖度?
- 50、BLEU/ROUGE分数在机器翻译中的局限性体现在哪些实际案例?
- 51、对抗性测试(Adversarial Testing)如何发现大模型的安全漏洞?
- 52、可解释性工具(如LIME)在金融风控模型中的实际应用效果如何?
- 53、模型偏见检测(如IBM AI Fairness 360)在招聘系统中的改进策略?
- 54、大模型驱动的自动化写作是否会导致新闻行业失业?如何平衡效率与真实性?
- 55、智能辅导系统(如Khanmigo)如何避免加剧教育资源不平等?
- 56、深度伪造(Deepfake)检测技术在政治选举中的部署现状如何?
- 57、代码生成工具是否会导致开发者技能退化?企业如何应对?
- 58、欧盟AI法案(AI Act)对大模型训练数据的透明度要求有哪些具体条款?
- 59、生成式AI内容版权归属在中国的司法实践中如何判定?
- 60、医疗大模型(如IBM Watson)的责任界定在FDA审批中的挑战是什么?
- 61、金融大模型(如BloombergGPT)的合规性审查流程包括哪些环节?
- 62、行业大模型(如金融风控)的定制化开发周期通常需要多久?
- 63、GPT-4 Turbo与Claude 3.5 Sonnet在长文本处理中的速度差异?
- 64、Qwen-Max与DeepSeek V2在中文语义理解中的优劣势?
- 65、Llama 3与Mistral Large在代码生成中的错误率对比?
- 二、进阶知识
- 三、项目积累
- 1、为何选择DeepSeek-R1作为基础模型?其核心优势(如长文本处理、逻辑推理)如何与iFmx的智能体功能结合?
- 2、是否对DeepSeek-R1进行了微调?具体调整了哪些参数或数据集以适配智能体功能?
- 3、若用户提问“帮我写一篇关于AI伦理的论文大纲”,智能体如何调用DeepSeek-R1的推理能力生成结构化内容?
- 4、如何设计智能体的多轮对话能力?是否支持上下文记忆?
- 5、文生图功能基于哪个模型?如何平衡生成速度与图像质量?
- 6、是否支持用户自定义图像风格(如赛博朋克、水墨画)?技术实现路径是什么?
- 7、iFmx的核心用户群体是谁?如何解决他们的具体痛点?
- 8、与同类产品(如文心一言、通义千问)相比,iFmx的核心差异化是什么?
一、基础知识
1. 大语言模型的类型有哪些
- GPT:自回归模型,擅长文本生成。GPT系列通过大规模数据的预训练,能生成连贯多样的自然语言文本。
在生成的文本时逐步预测下一个词。
架构: 基于Transformer架构的Decoder部分。它是一个自回归模型,在生成文本时逐步预测下一个词。
使用大规模文本数据进行无监督预训练,目标是预测下一个词(自回归任务)
示例: :GPT、GPT2、GPT3
- BERT:BERT是一个双向的Transformer模型,主要用于 语言理解任务,如文本分类、命名实体识别、问答等。
架构: 基于Transformer架构的Encode部分。BERT是双向的,在训练的时候,同时考虑上下文的左边与右边。
训练方式: 采用“掩码语言模型”任务进行预训练。部分词被随机掩盖,模型通过上下文预测被掩盖的词。
- T5:将所有的NLP任务都转换为了文本到文本的任务。
基于Transformer的Encoder-Decoder结构,既能生成文本,也能进行文本理解。
- Turing-NLG、Megatron:生成型大语言模型,专注提高生成文本质量和多样性。
- BLOOM、LLaMA、OPT:文本生成和理解【近期推出的开源大模型】
2、什么是大语言模型(LLM)?
大语言模型是一种基于深度学习的人工智能模型,能够理解和生成类似人类的自然语言文本。
3、LLM通常基于那种网络架构?
基于 Transformer 架构。
3、大模型为何普遍采用Transformer而非RNN?在处理长文本时具体优势是什么?
4、LLM 的主要训练目标是什么?
预测给定上下文中下一个最可能的词或标记。
5、什么是“预训练-微调”范式?
先在大规模通用语料上进行预训练,然后在特定任务数据上进行微调。
6、LLM 的典型输入和输出是什么?
输入是自然语言提示(prompt),输出是生成的文本(completion)。
7、Transformer 架构的核心机制是什么?
自注意力机制(Self-Attention)。
7、自注意力机制如何动态衡量输入序列中每个词的重要性?能否举例说明?
7、多头注意力机制中“头数”参数对模型性能的影响有哪些实际案例?
7、为什么说Transformer的并行计算能力是大模型训练效率的关键?
8、LLM 中的“位置编码”作用是什么?
为模型提供词语在序列中的位置信息。
9、什么是“参数量”在 LLM 中的意义?
表示模型的规模,参数越多,模型越复杂。
10、训练 LLM 需要哪些资源?
大量的文本数据和高性能计算资源,如 GPU。
11、LLM 如何处理长文本输入?
通过分段处理或使用改进的模型架构来处理长文本。
12、LLM 可以应用于哪些任务?
文本生成、翻译、摘要、问答、对话系统等。
13、什么是“零样本学习”在 LLM 中的应用?
模型在未见过特定任务的情况下,仍能进行推理和生成。
14、LLM 如何用于代码生成?
通过训练在编程语言上的模型,如 OpenAI 的 Codex。
15、LLM 在医疗领域的应用有哪些?
医学文献摘要、临床问答、电子病历分析等。
16、LLM 如何支持多语言处理?
通过在多语言数据上训练,实现跨语言的理解和生成。
17、什么是“幻觉”问题?
LLM 生成内容时可能出现不真实或不准确的信息。
18、LLM 如何处理偏见问题?
通过数据清洗、模型调整和后处理等方法减少偏见。
19、LLM 的输出如何进行评估?
使用 BLEU、ROUGE、GPT-Score 等指标进行评估。
20、LLM 在法律领域的应用挑战有哪些?
需要确保输出的准确性和合规性,避免误导。
21、LLM 的环境影响是什么?
训练大型模型消耗大量能源,需关注其碳足迹。
22、GPT-4的1.8万亿参数与LLaMA-3的650亿参数在推理成本上有何差异?
23、参数规模扩大是否必然导致性能提升?是否存在边际效应递减的场景?
24、稀疏激活技术(如MoE)如何通过动态路由降低大模型计算开销?
25、参数高效微调(PEFT)方法(如LoRA)如何平衡性能与部署成本?
26、Scaling Law是否适用于所有大模型?在多模态模型中是否依然成立?
27、预训练阶段的数据清洗策略如何影响模型偏见?以医疗数据为例说明。
28、人类反馈强化学习(RLHF)在对话系统中的具体实施步骤是什么?
29、模型量化(如INT8)对推理速度和准确率的权衡在金融风控场景中如何体现?
30、智能客服系统如何通过大模型实现多轮对话的上下文理解?
31、代码生成工具(如GitHub Copilot)如何利用大模型减少开发者重复劳动?
32、情感分析模型在社交媒体舆情监测中的误判率通常是多少?如何优化?
33、文本摘要模型在新闻聚合平台中如何避免关键信息丢失?
34、医学影像诊断中,大模型如何区分CT图像中的微小结节与伪影?
35、自动驾驶场景中,视觉-语言模型(VLM)如何处理复杂路况描述?
36、图像生成模型(如Stable Diffusion)在广告设计中的版权争议如何解决?
37、目标检测模型在安防监控中如何平衡误报率与实时性?
38、多模态搜索(如Pinterest)如何通过图文匹配提升用户点击率?
39、语音-文本双向转换在智能音箱中的延迟通常控制在多少毫秒以内?
40、图文生成技术(如DALL·E 3)在电商场景中如何降低商品描述成本?
41、视频内容分析(如动作识别)在体育赛事直播中的准确率要求是多少?
42、使用TPU v4芯片训练千亿参数模型时,如何优化内存占用?
43、模型蒸馏技术(Knowledge Distillation)在移动端部署中的压缩比能达到多少?
44、分布式训练框架(如DeepSpeed)如何解决多GPU通信瓶颈?
45、模型即服务(MaaS)平台(如Hugging Face)如何实现多模型动态调度?
46、合成数据(Synthetic Data)在医疗影像训练中的有效性验证方法是什么?
47、弱监督学习(Weakly-Supervised Learning)如何减少标注成本?
48、数据增强技术(如CutMix)在目标检测任务中的参数调优经验?
49、多语言数据集(如mC4)如何平衡不同语种的覆盖度?
50、BLEU/ROUGE分数在机器翻译中的局限性体现在哪些实际案例?
51、对抗性测试(Adversarial Testing)如何发现大模型的安全漏洞?
52、可解释性工具(如LIME)在金融风控模型中的实际应用效果如何?
53、模型偏见检测(如IBM AI Fairness 360)在招聘系统中的改进策略?
54、大模型驱动的自动化写作是否会导致新闻行业失业?如何平衡效率与真实性?
55、智能辅导系统(如Khanmigo)如何避免加剧教育资源不平等?
56、深度伪造(Deepfake)检测技术在政治选举中的部署现状如何?
57、代码生成工具是否会导致开发者技能退化?企业如何应对?
58、欧盟AI法案(AI Act)对大模型训练数据的透明度要求有哪些具体条款?
59、生成式AI内容版权归属在中国的司法实践中如何判定?
60、医疗大模型(如IBM Watson)的责任界定在FDA审批中的挑战是什么?
61、金融大模型(如BloombergGPT)的合规性审查流程包括哪些环节?
62、行业大模型(如金融风控)的定制化开发周期通常需要多久?
63、GPT-4 Turbo与Claude 3.5 Sonnet在长文本处理中的速度差异?
64、Qwen-Max与DeepSeek V2在中文语义理解中的优劣势?
65、Llama 3与Mistral Large在代码生成中的错误率对比?
二、进阶知识
三、项目积累
背景:我们的团队做了一款在工厂内部使用的大模型平台工具,名字叫做iFmx,通用问答用的是deepseekr1模型,里边集成了文本翻译,文档翻译,代码生成,文本总结,PPT生成等功能,面试官可能会基于这个的问题:
1、为何选择DeepSeek-R1作为基础模型?其核心优势(如长文本处理、逻辑推理)如何与iFmx的智能体功能结合?
2、是否对DeepSeek-R1进行了微调?具体调整了哪些参数或数据集以适配智能体功能?
3、若用户提问“帮我写一篇关于AI伦理的论文大纲”,智能体如何调用DeepSeek-R1的推理能力生成结构化内容?
4、如何设计智能体的多轮对话能力?是否支持上下文记忆?
5、文生图功能基于哪个模型?如何平衡生成速度与图像质量?
6、是否支持用户自定义图像风格(如赛博朋克、水墨画)?技术实现路径是什么?
7、iFmx的核心用户群体是谁?如何解决他们的具体痛点?
8、与同类产品(如文心一言、通义千问)相比,iFmx的核心差异化是什么?
正在学习大模型相关知识内容,以上问题会慢慢补充,之后先死记硬背,后续融会贯通!