bbox(bounding box/边界框)
Bbox是BoundingBox(边界框)的缩写,指的是目标检测中用于表示物体位置和大小的有向矩形框。通常情况下爱,对于一张图像中的每个目标物体,在训练集中都会预先标注一个对应的Bbox,即表表示该物体在图像中的位置和大小。
在模型预测时,通过对图像中多个位置或尺度的Bbox进行检测,可以识别出图像中包含的目标物体。
在目标检测算法中,Bbox与Anchor框紧密相关,因为Anchor框通常作为预定义的候选框用于捕获可能包含目标的区域。而在Anchor框生成的候选框中,通过进一步筛选和调整,可以得到最终的目标BBox。
因此,Bbox通常也被称为检测框,因为它是表示目标位置和大小的一种重要方式。
anchor(先验框)
Anchor是由Bbox筛选得到的。
Anchor和BBox在目标检测中的作用不同。
Anchor通常是一组预定的候选框,用来在输入图像上确定可能包含目标物体的位置。具体地说,通常在图像上生成一系列大小和长宽比不同的Anchor框,然后与目标物体进行匹配和调整,最终得到包含目标的候选框。
更具体的说,模型通过比较Anchor和真实目标框之间的IOU(交并比)来确定哪些Anchor框包含目标,以及如何调整Anchor框来