Dipping PLMs Sauce: Bridging Structure and Text for EffectiveKnowledge Graph Completion via Conditi

CSProm-KG是一种针对知识图谱补全(KGC)的方法,旨在平衡结构信息和文本知识的利用。通过条件软提示,该模型在不忽视结构知识的情况下,利用预训练语言模型学习文本信息。实验在多个基准数据集上展示了CSProm-KG的优越性能,设定了新的 state-of-the-art 结果,并通过分析证明了其组件的有效性、效率和灵活性。
摘要由CSDN通过智能技术生成

最新未引用

Abstract

知识图谱补全(KGC)通常需要知识图谱的结构信息和文本信息才能有效。预训练语言模型(PLMs)被用来学习文本信息,通常在KGC任务的微调范式下。然而,精心调整的plm往往压倒性地关注文本信息而忽略了结构知识。为了解决这一问题,本文提出了在结构信息和文本知识之间保持平衡的条件软提示CSProm-KG (Conditional Soft prompt for KGC)。cspm - kg只调整由实体和关系表示生成的条件软提示的参数。我们在三个流行的静态KGC基准WN18RR、FB15K-237和Wikidata5M以及两个临时KGC基准ICEWS14和ICEWS0515上验证了cspromm - kg的有效性。CSProm-KG优于竞争对手的基准模型,并在这些基准上设置了新的最先进的技术。我们进行了进一步的分析,以显示(i)我们提出的组件的有效性,(ii) CSProm-KG的效率,以及(iii) CSProm-KG的灵活性。

 图2:用于KG查询的CSProm-KG示例(Steve Jobs, Place of Birth, 1955-02-24)。CSProm-KG使用实体和关系的嵌入(在训练前随机初始化)来生成条件软提示。在冻结的plm中,条件软提示与KG查询的文本信息完全交互。将输出输入到基于图的KGC模型中进行最终预测。为了提高CSProm-KG识别文本相似实体的能力,我们在训练过程中进一步添加了与尾实体相似的LAR样本。CSProm-KG有效地学习了KG中的结构知识和语篇知识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值