SGMEA: Structure-Guided Multimodal Entity Alignment

3 Method

3.1 Problem Definition

3.2 Framework Description

总体框架如图2所示,由三个主要部分组成:初始嵌入采集模块、结构引导模块和模态融合模块。

3.3 Initial Embedding Acquisition

3.3.1 Structural Embedding

3.3.2 Relation, Attribute, and Visual Embedding 

3.4 Structure-guided

3.4.1 Structure-Guided Visual Embedding

3.4.2 Structure-Guided Attribute Embedding

3.4.3 不对关系应用结构引导的原因

我们选择不对关系应用结构引导,因为关系天然存在于两个相邻实体之间,并且已经通过它们的交互明确地建模。在图结构中,关系自然捕捉实体间的语义信息,因此额外的 GAT 引导是没有必要的。与属性或图像嵌入相比,关系的表示已经足够稳健,进一步的引导可能会引入冗余,或对模型性能产生负面影响。

3.5 Modality Fusion

在本模块中,我们遵循Chen等人(2023a)对vanilla Transformer进行调整(Zhou等人,2021)

3.5.1 Modal representation generation and interaction

 3.5.2 Multi-head cross-attention and processing

3.5.3 Fusion representation generation

 3.6 Optimization Objective

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值