Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction

TACO是一种新的归纳链接预测方法,它通过建模知识图谱中关系之间的拓扑感知相关性来提高性能。TACO利用关系相关网络(RCN)学习关系对的7种关联模式,并提出完全共邻诱导子图(CCN)以保留推理路径,从而在归纳链接预测中优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

归纳链接预测——训练和推理阶段的实体可能不同——已经显示出以实体独立的方式完成不断发展的知识图谱的巨大潜力。许多流行的方法主要集中在图级特征的建模上,而边缘级交互,特别是关系之间的语义相关性的探索较少。然而,我们注意到关系之间的语义相关性的一个理想特性是它们本质上是边缘级和实体独立的。这意味着语义关联对于独立于实体的归纳链接预测任务具有巨大的潜力。受这一观察结果的启发,我们提出了一种新的基于子图的方法,即TACO,来模拟子图中与其拓扑结构高度相关的关系之间的拓扑感知相关性。具体来说,我们证明了任意两个关系之间的语义关联可以分为7个拓扑模式,然后提出了关系相关网络(RCN)来学习每个模式的重要性。为了进一步挖掘RCN的潜力,我们提出了完全共邻诱导子图,该子图可以有效地保留子图内的完整拓扑模式。大量的实验表明,TACO有效地统一了图级信息和边缘级交互来共同执行推理,从而在归纳链路预测任务中比现有的最先进的方法具有更好的性能。

1.介绍

知识图以事实三元组(头部实体、关系、尾部实体)的形式组织人类知识,这些图将实体表示为节点,将关系表示为边。知识图谱的例子包括WordNet[1]、Freebase[2]和DBPedia[3]。近年来,知识图被广泛应用于自然语言处理[4]、问答[5]、推荐系统[6]等领域。然而,现实世界的知识图谱面临着不断涌现的新实体的挑战,例如电子商务知识图谱中的新用户和新产品,或者生物医学知识图谱中的新分子[7]。此外,知识图谱往往

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蜗子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值