摘要
归纳链接预测——训练和推理阶段的实体可能不同——已经显示出以实体独立的方式完成不断发展的知识图谱的巨大潜力。许多流行的方法主要集中在图级特征的建模上,而边缘级交互,特别是关系之间的语义相关性的探索较少。然而,我们注意到关系之间的语义相关性的一个理想特性是它们本质上是边缘级和实体独立的。这意味着语义关联对于独立于实体的归纳链接预测任务具有巨大的潜力。受这一观察结果的启发,我们提出了一种新的基于子图的方法,即TACO,来模拟子图中与其拓扑结构高度相关的关系之间的拓扑感知相关性。具体来说,我们证明了任意两个关系之间的语义关联可以分为7个拓扑模式,然后提出了关系相关网络(RCN)来学习每个模式的重要性。为了进一步挖掘RCN的潜力,我们提出了完全共邻诱导子图,该子图可以有效地保留子图内的完整拓扑模式。大量的实验表明,TACO有效地统一了图级信息和边缘级交互来共同执行推理,从而在归纳链路预测任务中比现有的最先进的方法具有更好的性能。
1.介绍
知识图以事实三元组(头部实体、关系、尾部实体)的形式组织人类知识,这些图将实体表示为节点,将关系表示为边。知识图谱的例子包括WordNet[1]、Freebase[2]和DBPedia[3]。近年来,知识图被广泛应用于自然语言处理[4]、问答[5]、推荐系统[6]等领域。然而,现实世界的知识图谱面临着不断涌现的新实体的挑战,例如电子商务知识图谱中的新用户和新产品,或者生物医学知识图谱中的新分子[7]。此外,知识图谱往往