cuda=10.0 安装 pytorch=1.4.0+torchvision=0.5.0 或 cpu安装pytorch

本文详细介绍了如何在GPU和CPU环境下安装PyTorch及Torchvision。对于GPU环境,需先查看CUDA版本,然后使用指定命令安装;对于CPU环境,建议通过whl文件进行安装,并给出了具体步骤。安装完成后,可通过运行测试代码验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch+torchvision 安装


不同的安装命令可到PyTorch官网查看:PyTorch官网
点击Get-Started,到如下界面查找适合自己配置的命令。
在这里插入图片描述
下面分别介绍GPU方式安装和CPU方式安装


GPU方式安装:

首先用如下命令查看CUDA版本

cat /usr/local/cuda/version.txt

在这里插入图片描述
本机CUDA 版本为10.0
再安装 pytorch 和 torchvision

 pip install torch==1.4.0+cu100 torchvision==0.5.0+cu100 -f https://download.pytorch.org/whl/torch_stable.html

在这里插入图片描述
安装成功!


CPU方式安装:

直接采用命令方式安装一直没成功,最后采用whl方式安装,成功。
下载地址:https://download.pytorch.org/whl/torch_stable.html
ctrl-F查找,找到 torch=1.4,cpu版本,操作系统版本为windows,以及适合自己python版本的whl文件并下载。(cp37表示适合python3.7版本)
在这里插入图片描述
我下载的是 cpu/torch-1.4.0%2Bcpu-cp37-cp37m-win_amd64.whl
下载后的文件名为:torch-1.4.0+cpu-cp37-cp37m-win_amd64.whl
cd 到该.whl文件所在的文件夹,利用以下命令即可安装。

pip install torch-1.4.0+cpu-cp37-cp37m-win_amd64.whl

再安装 torchvision

pip install torchvision ==0.5.0

简单测试一下是否安装成功,运行以下代码检验:

import torch
import torchvision
print(torch.__version__)

能正确输出信息则安装成功!

推荐博客:torch 与 torchvision 版本对应关系

Good Luck!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值