剑指 13 机器人的运动范围
原题目
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
约束:
1 <= n,m <= 100
0 <= k <= 20
考查知识点
回溯法
好的解法
剑指书上给出一种回溯解法,与上一道题 剑指 12 矩阵中的路径 类似,设置一个访问轨迹的矩阵,通过回溯函数中使用递归来访问上下左右四个点。另外值得注意的是最基础的数位取和运算,这里也给出了
class Solution01 {
public:
int movingCount(int rows, int cols, int threshold)
{
if(threshold<0 || rows<=0 || cols<=0)
return 0;
//访问矩阵
bool *visited = new bool[rows*cols];
for (int i=0; i<rows; ++i)
visited[i] = false;
int count = movingCountCore(threshold, rows, cols, 0, 0, visited);
delete [] visited;
return count;
}
int movingCountCore(int threshold, int rows, int cols, int row, int col, bool *visited)
{
int count = 0;
if (check(threshold, rows, cols, row, col, visited))
{
visited[row*cols + col] = true;
//递归查看能否到达上下左右四个点
count = 1
+ movingCountCore(threshold, rows, cols, row-1, col, visited)
+ movingCountCore(threshold, rows, cols, row+1, col, visited)
+ movingCountCore(threshold, rows, cols, row, col-1, visited)
+ movingCountCore(threshold, rows, cols, row, col+1, visited);
}
return count;
}
//判断机器人是否能进入坐标为(row, col)的方格
bool check(int threshold, int rows, int cols, int row, int col, bool *visited)
{
if (row>=0 && row<rows && col>=0 && col<cols && getDigitSum(row)+getDigitSum(col)<=threshold && !visited[row*cols + col])
return true;
return false;
}
//得到一个数字的数位之和
int getDigitSum(int number)
{
int sum = 0;
while (number>0)
{
sum += number%10;
number /= 10;
}
return sum;
}
};
优化
在力扣 Simple c++ dfs -z 这篇题解中对回溯解法进行了优化,将check()
子函数与getDigitSum()
子函数进行了合并,体现在dfs()
函数的if判断以及返回值上
//力扣简化版
class Solution
{
public:
bool visited[100][100]; //限制1:题目限制最大行数与最大列数
int movingCount(int m, int n, int k)
{
return dfs(m, n, 0, 0, k);
}
int dfs(int m, int n, int i, int j, int k)
{
if(i<0 || i>=m || j<0 || j>=n || i%10 + i/10 + j%10 +j/10 > k || visited[i][j]) //限制2:题目给定k为两位数
return false;
visited[i][j] = true;
return 1 + dfs(m,n,i-1,j,k) + dfs(m,n,i+1,j,k) + dfs(m,n,i,j-1,k) + dfs(m,n,i,j+1,k);
}
};
获得的思考
结合题目的约束写的代码可以用泛化能力的降低换取解决问题的效率
像剑指中的代码,可以无视矩阵维度与选择数字的限制,但是力扣的优化代码,就只适用于k为两位数,并且对矩阵维度有大小限制