tf.keras.layers.Conv1D 一维卷积 示例
import tensorflow as tf
from tensorflow import keras
import numpy as np
a1 = np.arange(0, 50).reshape(10, 5,1)
input_data = a1.astype(np.float32)
print(input_data.shape)
(10, 5, 1)
output_data = keras.layers.Conv1D(
64, # 输出维度的最后一维
2, # 整数,过滤器的大小,如果为一个整数则宽和高相同,这里卷积核 2
activation='relu', # 激活函数
strides=1, # 步长,默认为 1
)(input_data)
print(output_data.shape) # output.shape = (inputs.shape - 卷积核) / 步长 + 1
(10, 4, 64)