tf.keras.layers.Conv1D 一维卷积 示例

本文介绍了如何使用TensorFlow库中的`tf.keras.layers.Conv1D`进行一维卷积操作。示例展示了如何定义一个一维卷积层,输入数据为形状(10, 5, 1)的张量,经过卷积层后,输出形状变为(10, 4, 64)。激活函数采用了ReLU,步长为1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.keras.layers.Conv1D 一维卷积 示例

import tensorflow as tf
from tensorflow import keras
import numpy as np
a1 = np.arange(0, 50).reshape(10, 5,1)
input_data = a1.astype(np.float32)
print(input_data.shape)
(10, 5, 1)
output_data = keras.layers.Conv1D(
    64,  # 输出维度的最后一维
    2,  # 整数,过滤器的大小,如果为一个整数则宽和高相同,这里卷积核 2
    activation='relu',  # 激活函数
    strides=1,  # 步长,默认为 1
)(input_data)
print(output_data.shape)  # output.shape = (inputs.shape - 卷积核) / 步长 + 1

(10, 4, 64)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏华东的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值