# POJ2739 Sum of Consecutive Prime Numbers（AC代码 + 详解）

• Sum of Consecutive Prime Numbers

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
Your mission is to write a program that reports the number of representations for the given positive integer.

• Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

• Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

• Sample Input

2
3
17
41
20
666
12
53
0

• Sample Output

1
1
2
3
0
0
1
2

/*================================================================
# File Name: poj2739.cpp
# Author: Defepe
# Created Time: 2020/7/3 16:23:31
================================================================*/
#include <iostream>

using namespace std;

int prime[10005] = {0}, vis[10005] = {0}, cnt = 0;
void func() {
for(int i = 2; i <= 10000; i++) {
if(!vis[i]) prime[cnt++] = i;
for(int j = 0; j < cnt && prime[j] * i <= 10000; j++) {
vis[prime[j] * i] = 1;
if(i % prime[j] == 0) break;
}
}
}
int main() {
func();   //先进行预处理，计算出2~10000内的素数表，这里用的是欧拉素数筛
int n, ans = 0;  //ans是方法数，n为输入的整数
while(scanf("%d", &n) && n) {  //当n为0时退出循环
for(int i = 0; prime[i] <= n; i++)  //这两层循环相当于做了一个从左到右的扫描，以i为左端点，j为右端点进行扫描，如果相等ans++，如果大于则左端点向右移动，如果小于则右端点向右移动
{
int sum = 0;
for(int j = i; j < cnt; j++)
{
sum += prime[j];
if(sum == n) ans++;
else if(sum > n) break;
}
}
printf("%d\n", ans);  //输出这个数的答案的同时也要将ans赋0，进行下一个数的计算
ans = 0;
}
return 0;
}


12-04 228

04-27 2054
01-30 355
10-31 98
05-10 1826
07-07 391
11-20 295
03-30 1758
08-12 957
11-14 1460
11-08 728