POJ 2387 Til the Cows Come Home (dijkstra求最短路径)

Til the Cows Come Home

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible
Farmer John’s field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1…N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and
* Lines 2…T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1…100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

题意:计算从1到N点的最短路。经典的dijkstra单源最短路。
代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>

using namespace std;

int cnt = 0, head[4005] = {0}, d[1005];
struct Edge{
	int next, u, v, w;
}e[4005];
struct node{
    int pos;
    int dis;
    bool operator <( const node &x )const
    {
        return x.dis < dis;
    }
};
inline void add(int u, int v, int w){
	e[++cnt].u = u;
	e[cnt].v = v;
	e[cnt].w = w;
	e[cnt].next = head[u];
	head[u] = cnt;
}

void dijkstra(){
	int vis[1005];
	memset(d, 0x3f, sizeof(d));
	memset(vis, 0, sizeof(vis));
	d[1] = 0;
	priority_queue<node> q;
	q.push((node){1, 0});
	while(!q.empty()){
		node x = q.top();
		int u = x.pos;
		q.pop();
		if(vis[u]) continue;
		vis[u] = 1;
		for(int i = head[u]; i; i = e[i].next){
			int x = e[i].v;
			if(d[x] > d[u] + e[i].w){
				d[x] = d[u] + e[i].w;
				q.push((node){x, d[x]});
			}
		}
	}
}
int main(){
	int n, m;
	scanf("%d %d", &m, &n);
	for(int i = 0, u, v, w; i < m; i++){
		scanf("%d %d %d", &u, &v, &w);
		add(u, v, w);
		add(v, u, w);
	}
	dijkstra();
	printf("%d", d[n]);
	return 0;
}

End

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值