题意:给你一个字符串求最长回文子序列。
这是区间dp的经典问题,设dp[ i ][ j ] 为区间i到j中最长回文子序列的长度。
当s[ i ] == s[ j ] 的时候,dp[ i ][ j ] = dp[ i + 1][ j - 1] + 2;
当s[ i ] != s[ j ] 的时候,dp[ i ] [ j ] = max( dp [ i + 1 ][ j ] , dp[ i ] [ j - 1] );
那么最终的答案就是 dp[ 0 ] [ n ].
时间复杂度时,空间复杂度时.
代码:
class Solution {
public:
int longestPalindromeSubseq(string s) {
int dp[1005][1005];
for(int i=0;i<=s.size();i++)dp[i][i] = 1;
for(int l=2;l<=s.size();l++)
{
for(int i=0;i+l-1<s.size();i++)
{
int j = i+l-1;
if(s[i] == s[j])dp[i][j] = dp[i+1][j-1] + 2;
else dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
}
}
return dp[0][s.size()-1];
}
};
考虑优化的情况,时间复杂度没法优化了,空间复杂度可以,因为每次转移,都是从比当前枚举长度少1的方案数转移,也就是说,实际上我们只用了当前长度和比当前长度短1的这两种状态,其他的状态都是不必要的,所以我们可以考虑用滚动数组优化。cur等于1是代表长度为奇数,起点为i 的解,cur=0代表偶数,这样我们就可以用滚动数组的方式把空间压缩到 .
code:
class Solution {
public:
int longestPalindromeSubseq(string s) {
int dp[1005][2];
memset(dp,0,sizeof(dp));
int cur = 1;
for(int i=0;i<=s.size();i++)dp[i][cur] = 1;
for(int l=2;l<=s.size();l++)
{
cur^=1;
for(int i=0;i+l-1<s.size();i++)
{
int j = i+l-1;
if(s[i] == s[j])dp[i][cur] = dp[i+1][cur] + 2;
else dp[i][cur] = max(dp[i+1][cur^1],dp[i][cur^1]);
}
}
return dp[0][cur];
}
};