leetcode 516.最长回文子序列 (区间dp)

link

题意:给你一个字符串求最长回文子序列。

这是区间dp的经典问题,设dp[ i ][ j ] 为区间i到j中最长回文子序列的长度。

当s[ i ] == s[ j ] 的时候,dp[ i ][ j ] = dp[ i + 1][ j - 1] + 2;

当s[ i ] != s[ j ] 的时候,dp[ i ] [ j ]  =  max( dp [ i + 1 ][ j ] , dp[ i ] [ j - 1] );

那么最终的答案就是 dp[ 0 ] [ n ].

时间复杂度时o(n^2),空间复杂度时o(n^2).

代码:

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int dp[1005][1005];
        for(int i=0;i<=s.size();i++)dp[i][i] = 1;
        for(int l=2;l<=s.size();l++)
        {
            for(int i=0;i+l-1<s.size();i++)
            {
                int j = i+l-1;
                if(s[i] == s[j])dp[i][j] = dp[i+1][j-1] + 2;
                else dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
            }
        }
        return dp[0][s.size()-1];
    }
};

考虑优化的情况,时间复杂度没法优化了,空间复杂度可以,因为每次转移,都是从比当前枚举长度少1的方案数转移,也就是说,实际上我们只用了当前长度和比当前长度短1的这两种状态,其他的状态都是不必要的,所以我们可以考虑用滚动数组优化。cur等于1是代表长度为奇数,起点为i 的解,cur=0代表偶数,这样我们就可以用滚动数组的方式把空间压缩到 o(2n).

code:

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int dp[1005][2];
        memset(dp,0,sizeof(dp));
        int cur = 1;
        for(int i=0;i<=s.size();i++)dp[i][cur] = 1;
        for(int l=2;l<=s.size();l++)
        {
            cur^=1;
            for(int i=0;i+l-1<s.size();i++)
            {
                int j = i+l-1;
                if(s[i] == s[j])dp[i][cur] = dp[i+1][cur] + 2;
                else dp[i][cur] = max(dp[i+1][cur^1],dp[i][cur^1]);
            }
        }
        return dp[0][cur];
    }
};

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值