区间DP——最长回文子序列/子串

最长回文子序列

状态转移

d [ i ] [ j ] d[i][j] d[i][j]表示以 i i i为起点以 j j j为终点的区间内的最长回文子序列长度,显然此问题类似于最大公共子序列,那么我们可以得到递推方程:

  • s [ i ] = = s [ j ] s[i]==s[j] s[i]==s[j],那么 d [ i ] [ j ] = d [ i + 1 ] [ j − 1 ] + 2 d[i][j] = d[i+1][j-1]+2 d[i][j]=d[i+1][j1]+2
  • 否则 d [ i ] [ j ] = m a x ( d [ i + 1 ] [ j − 1 ] , d [ i ] [ j − 1 ] ) d[i][j] = max(d[i+1][j-1],d[i][j-1]) d[i][j]=max(d[i+1][j1],d[i][j1])

代码

不难发现大区间依赖于小区间,那么必须按区间DP的思想更新状态转移方程,可以得到如下三种写法的代码:

int d[1005][1005];
char s[1005];

void solve1() {
    int n = strlen(s + 1);
    for (int i = 1; i <= n; i++) d[i][i] = 1;
    for (int len = 2; len <= n; len++) {
        for (int i = 1; i <= n - len + 1; i++) {
            int j = i + len - 1;
            if (s[i] == s[j])
                d[i][j] = d[i + 1][j - 1] + 2;
            else
                d[i][j] = max(d[i + 1][j], d[i][j - 1]);
        }
    }
}

void solve2() {
    int n = strlen(s + 1);
    for (int i = 1; i <= n; i++) d[i][i] = 1;
    for (int i = n; i >= 1; i--) {
        for (int j = i + 1; j <= n; j++) {
            if (s[i] == s[j])
                d[i][j] = d[i + 1][j - 1] + 2;
            else
                d[i][j] = max(d[i + 1][j], d[i][j - 1]);
        }
    }
}

void solve3() {
    int n = strlen(s + 1);
    for (int i = 1; i <= n; i++) d[i][i] = 1;
    for (int j = 1; j <= n; j++) {
        for (int i = 1; i < j; i++) {
            if (s[i] == s[j])
                d[i][j] = d[i + 1][j - 1] + 2;
            else
                d[i][j] = max(d[i + 1][j], d[i][j - 1]);
        }
    }
}
最长回文子串

这里不考虑马拉车算法,只考虑DP

状态转移

和最长回文子序列,如果设 d [ i ] [ j ] d[i][j] d[i][j]表示以 i i i为起点以 j j j为终点的区间内的最长回文子串长度,那么状态转移时,若 s [ i ] = = s [ j ] s[i]==s[j] s[i]==s[j],但是区间内最长子串的起点和终点并不能确定,除非 d [ i + 1 ] [ j − 1 ] d[i+1][j-1] d[i+1][j1]本身就是最大的回文子串,因此,这里只能用 d [ i ] [ j ] d[i][j] d[i][j]表示区间 [ i , j ] [i,j] [i,j]整体是否为回文子串:

  • s [ i ] = = s [ j ]    & &    d [ i − 1 ] [ j + 1 ] = 1 s[i]==s[j]~~\&\&~~d[i-1][j+1] = 1 s[i]==s[j]  &&  d[i1][j+1]=1,那么 d [ i ] [ j ] = 1 d[i][j] = 1 d[i][j]=1
  • 否则 d [ i ] [ j ] = 0 d[i][j] = 0 d[i][j]=0

代码

只需要每次 d [ i ] [ j ] = = 1 d[i][j]==1 d[i][j]==1时更新答案 a n s ans ans,设置 d [ i + 1 ] [ i ] = 1 d[i+1][i]=1 d[i+1][i]=1是为了特判长度为 2 2 2的情况。

int d[1005][1005];
char s[1005];

int solve1() {
    int n = strlen(s + 1), ans = 1;
    for (int i = 1; i <= n; i++) d[i][i] = d[i + 1][i] = 1;
    for (int len = 2; len <= n; len++) {
        for (int i = 1; i <= n - len + 1; i++) {
            int j = i + len - 1;
            if (s[i] == s[j] && d[i + 1][j - 1]) {
                d[i][j] = 1;
                ans = max(ans, len);
            }
        }
    }
    return ans;
}

int solve2() {
    int n = strlen(s + 1), ans = 1;
    for (int i = 1; i <= n; i++) d[i][i] = d[i + 1][i] = 1;
    for (int i = n; i >= 1; i--) {
        for (int j = i + 1; j <= n; j++) {
            if (s[i] == s[j] && d[i + 1][j - 1]) {
                d[i][j] = 1;
                ans = max(ans, j - i + 1);
            }
        }
    }
    return ans;
}

int solve3() {
    int n = strlen(s + 1), ans = 1;
    for (int i = 1; i <= n; i++) d[i][i] = d[i + 1][i] = 1;
    for (int j = 1; j <= n; j++) {
        for (int i = 1; i < j; i++) {
            if (s[i] == s[j] && d[i + 1][j - 1]) {
                d[i][j] = 1;
                ans = max(ans, j - i + 1);
            }
        }
    }
    return ans;
}
最长回文子序列(Longest Palindromic Subsequence,LPS)问题是指在一个给定的字符串中找到一个最长回文子序列回文子序列是指一个序列本身不是回文串,但它是一个回文串的子序列。 在C++中,我们可以使用动态规划(Dynamic Programming,DP)的方法来解决这个问题。动态规划的主要思想是将一个大问题分解成小问题,然后从小问题出发,逐渐求得大问题的解。 以下是一个使用动态规划解决最长回文子序列问题的C++示例代码: ```cpp #include <iostream> #include <vector> #include <string> using namespace std; // 函数用于计算字符串str的最长回文子序列的长度 int longestPalindromeSubseq(string str) { int n = str.size(); // 创建一个二维数组dp,用于存储子问题的解,初始化所有值为0 vector<vector<int>> dp(n, vector<int>(n, 0)); // 单个字符的最长回文子序列长度为1,所以对角线上的元素设置为1 for (int i = 0; i < n; i++) { dp[i][i] = 1; } // 如果两个字符相同,那么它俩组成的子序列长度为2 for (int cl = 2; cl <= n; cl++) { for (int i = 0; i < n - cl + 1; i++) { int j = i + cl - 1; if (str[i] == str[j] && cl == 2) { dp[i][j] = 2; } else if (str[i] == str[j]) { dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i][j - 1], dp[i + 1][j]); } } } // 返回整个字符串的最长回文子序列长度 return dp[0][n - 1]; } int main() { string str; cout << "请输入一个字符串:" << endl; cin >> str; cout << "最长回文子序列的长度为:" << longestPalindromeSubseq(str) << endl; return 0; } ``` 在这段代码中,`dp[i][j]`表示从字符串的第`i`个字符到第`j`个字符组成的子串最长回文子序列的长度。通过初始化对角线以及递推式逐步填充这个二维数组,最终可以得到整个字符串的最长回文子序列长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值