Linux+CentOS服务器NVIDIA显卡驱动更新(NVIDIA Driver)、CUDA、cuDNN更新


一、服务器显卡驱动更新

1、查看原有的显卡驱动和CUDA信息(做备份记录)

nvidia-smi -a

备注:

nvidia-smi:GPU驱动版本,driverAPI(支持的最高cuda版本)

watch -n 1 nvidia-smi:动态监控显卡状态

nvcc -V:cuda版本,timeAPI(运行时API)

2、删除原本服务器上的nvidia驱动程序

① 清除所有nvidia相关文件和依赖

yum remove nvidia-*

② 进一步清除(把nvidia-driver的相关组件都清理掉)

rpm -qa|grep -i nvid|sort
yum remove kmod-nvidia-*

③ 清除cuda

yum remove "*nvidia*"
yum remove "*cublas*" "cuda*"

④ 卸除驱动重启

sudo reboot

⑤ 输入nvidai-smi,报错的话就是卸载成功了。

3、重新安装nvidia驱动程序

① 在nvidia官网找到显卡对应的驱动程序,下载后复制到服务器上。可以自定义放在这个目录:/root/Downloads/(自定义即可)

  nvidia官网驱动下载:官方驱动 | NVIDIA

② cd到这个驱动文件的目录,然后运行这个驱动文件

cd /root/Downloads/
sh NVIDIA-Linux-x86_64-470.57.02.run

备注:在安装过程中可能会显示一个问题

选择NO继续。如果出现警告可以不用理会,直接继续,直到安装完成。

③ 安装完成后,输入nvidai-smi,显示如下,则安装成功。

二、CUDA更新

1、官网查找cuda对应的版本:CUDA Toolkit Archive | NVIDIA Developer

2、复制红框两行代码到服务器,进行CUDA下载

安装过程中,会问你是否需要下载驱动(Drive),正常情况下请不要下载,即选择否。即取消第一个Drive的[X],改为[ ](使用回车键取消选择),然后选“Install”开始安装下载。(默认安装目录是/usr/local/)

安装后会出现:

3、配置环境变量

① 打开编辑~/.bashrc文件:vim ~/.bashrc

② 在文件末尾添加如下两行(应该是有很多种添加方式,这里选用了其中一种)。PS, 要将cuda版本11.7替换成你安装的版本,如cuda-12.2。

export PATH=/usr/local/cuda-11.7/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

刷新~/.bashrc配置文件,使得配置生效:source ~/.bashrc

④ 测试、查询nvcc版本检查是否安装成功:nvcc -V

三、安装cudnn

1、官网下载cudnn

下载地址:https://developer.nvidia.com/rdp/cudnn-archive

备注:需要挂梯子,然后登录/注册英伟达的账号,进行邮箱验证。

2、下载tar.xz包后放在服务器目录下,使用tar命令对tar.xz进行解压

tar -xvf cudnn-linux-x86_64-8.8.1.3_cuda11-archive.tar.xz

3、将解压后的头文件和库复制到cuda目录中:

注意看cuda目录是不是正确,可能是cuda-11.7

cd cudnn-linux-x86_64-8.9.7.29_cuda11-archive
sudo cp include/cudnn*    /usr/local/cuda/include 
sudo cp lib/libcudnn*    /usr/local/cuda/lib64 
sudo chmod a+r /usr/local/cuda/include/cudnn*   /usr/local/cuda/lib64/libcudnn*

4、cuDNN安装完成,查看安装的版本:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~ 到这里搞定完啦 ~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


↓↓↓↓↓   以下是深度学习跑代码需要重新更新环境的步骤哦   ↓↓↓↓↓


四、为深度学习模型训练配置新环境、新版本的pytorch

1、用anaconda新建一个环境:

conda create -n env_name python=3.9.7 

2、激活这个新的环境:

conda activate env_name 

3、下载pytorch:

pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple

【备注官方pytorch的下载地址】 

下载地址:Start Locally | PyTorch

【备注一些anaconda的操作说明】:

查看安装了哪些包:conda list
查看有哪些虚拟环境:conda env list, conda info -e
创建虚拟环境:conda create -n env_name python=3.9.7  (env_name,改成自己的)
激活/切换虚拟环境:activate env_name   (env_name,改成自己的)
删除虚拟环境:conda remove -n env_name --all(env_name,改成自己的)

### 更新Linux系统中的显卡驱动程序 在Linux操作系统中更新显卡驱动程序涉及多个步骤,具体取决于所使用的硬件和发行版本。以下是针对NVIDIA显卡的具体操作指南。 #### 准备工作 为了确保顺利安装新的显卡驱动,在开始之前应当先备份重要数据并确认当前系统的状态良好。另外需要注意的是,某些情况下可能需要禁用开源 Nouveau 驱动来防止与专有 NVIDIA 驱动发生冲突[^4]。 #### 进入字符模式 通常建议通过字符界面来进行驱动的升级工作,这样可以减少图形环境带来的干扰。可以通过命令 `sudo systemctl set-default multi-user.target` 来切换至多用户目标(即字符界面),完成后再恢复原状:`sudo systemctl set-default graphical.target` #### 下载最新版驱动包 前往[NVIDIA官方网站](https://www.nvidia.com/)查询适用于自己GPU型号以及Linux版本的最新稳定版驱动,并将其下载保存到本地计机上。 #### 安装新驱动前准备 进入终端后输入如下指令以获取管理员权限: ```bash sudo su - ``` 接着定位到刚才存储驱动文件的位置,比如 `/home/user/downloads/`, 并给予其执行权限: ```bash chmod +x NVIDIA-Linux-x86_64*.run ``` #### 执行安装过程 运行刚刚获得可执行权能的脚本文件进行安装,推荐加上 `-no-opengl-files` 参数避免覆盖已有的OpenGL库文件;同时也可以附加其他选项如 `--silent`(静默安装)` --dkms`(支持动态内核模块管理),实际应用时可根据个人需求调整参数设置: ```bash ./NVIDIA-Linux-x86_64*.run -no-opengl-files ``` #### 处理潜在问题 如果遇到任何错误提示或者警告信息,请仔细阅读屏幕上的说明文字尝试解决问题。特别是当显示有关于现有驱动残留物的信息时,考虑先彻底清除旧版本再重试安装流程。对于Ubuntu这类基于Debian的系统来说,可以直接利用包管理系统移除先前安装过的NVIDIA组件: ```bash apt-get purge nvidia* ``` #### 最后的配置优化 成功安装完毕后记得重启电脑使更改生效。此外还可以编辑GRUB引导菜单里的默认启动项加入 nomodeset 或者 nouveau.modeset=0 参数帮助绕过可能出现的画面异常状况直到新驱动完全接管为止[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值