Feb.24 最长递增子序列(中等)& 最长回文子串(中等)

今天两道题都是动态规划类的题目。

动态规划的原理

动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
在这里插入图片描述

一、最长递增子序列

在这里插入图片描述

思路

定义 dp[j],dp[j] 为考虑前 j个元素,以第 j 个数字结尾的最长上升子序列的长度。

我们从小到大计算 dp[j] 数组的值,在计算 dp[j] 之前,我们已经计算出 dp[0]至dp[j-1]的值,则状态转移方程为:

dp[j] = max(dp[i]) + 1 , 其中0 <= i < j且nums[i] < nums[j]

也就是说,当nums[j] > nums[i]时,dp[j]取值为dp[j]与dp[i]+1之间的最大值

最后,整个数组的最长上升子序列即dp中的最大值。

图例:
在这里插入图片描述

# python3
class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        dp = list()
        for j in range(len(nums)):
            dp.append(1)
            for i in range(j):
                if nums[j] > nums[i]:
                    dp[j] = max(dp[i] + 1, dp[j])
        return max(dp)

二、最长回文子串

在这里插入图片描述
回文子串我老是会想到信条(TENET)…

思路

上一题我们可以看做一维的线性规划,因为dp是一维的list。那么这题就变成了二维,可以看成一个画表问题。

「动态规划」的一个关键的步骤是想清楚「状态如何转移」。事实上,「回文」天然具有「状态转移」性质。

一个回文去掉两头以后,剩下的部分依然是回文(这里暂不讨论边界情况);

依然从回文串的定义展开讨论:

  • 如果一个字符串的头尾两个字符都不相等,那么这个字符串一定不是回文串;
  • 如果一个字符串的头尾两个字符相等,才有必要继续判断下去。
  • 如果里面的子串是回文,整体就是回文串;
  • 如果里面的子串不是回文串,整体就不是回文串。

即:在头尾字符相等的情况下,里面子串的回文性质据定了整个子串的回文性质,这就是状态转移。因此可以把「状态」定义为原字符串的一个子串是否为回文子串。

第 1 步:定义状态
dp[i][j] 表示子串 s[i…j] 是否为回文子串,这里子串 s[i…j] 定义为左闭右闭区间,可以取到 s[i] 和 s[j]。

第 2 步:思考状态转移方程
在这一步分类讨论(根据头尾字符是否相等),根据上面的分析得到:

dp[i][j] = (s[i] == s[j]) and dp[i + 1][j - 1]
说明:

「动态规划」事实上是在填一张二维表格,由于构成子串,因此 i 和 j 的关系是 i <= j ,因此,只需要填这张表格对角线以上的部分。

看到 dp[i + 1][j - 1] 就得考虑边界情况。

边界条件是:表达式 [i + 1, j - 1] 不构成区间,即长度严格小于 2,即 j - 1 - (i + 1) + 1 < 2 ,整理得 j - i < 3。

这个结论很显然:j - i < 3 等价于 j - i + 1 < 4,即当子串 s[i…j] 的长度等于 2 或者等于 3 的时候,其实只需要判断一下头尾两个字符是否相等就可以直接下结论了。

如果子串 s[i + 1…j - 1] 只有 1 个字符,即去掉两头,剩下中间部分只有 11 个字符,显然是回文;
如果子串 s[i + 1…j - 1] 为空串,那么子串 s[i, j] 一定是回文子串。
因此,在 s[i] == s[j] 成立和 j - i < 3 的前提下,直接可以下结论,dp[i][j] = true,否则才执行状态转移。

第 3 步:考虑初始化
初始化的时候,单个字符一定是回文串,因此把对角线先初始化为 true,即 dp[i][i] = true 。

事实上,初始化的部分都可以省去。因为只有一个字符的时候一定是回文,dp[i][i] 根本不会被其它状态值所参考。

第 4 步:考虑输出
只要一得到 dp[i][j] = true,就记录子串的长度和起始位置,没有必要截取,这是因为截取字符串也要消耗性能,记录此时的回文子串的「起始位置」和「回文长度」即可。

第 5 步:考虑优化空间
因为在填表的过程中,只参考了左下方的数值。事实上可以优化,但是增加了代码编写和理解的难度,丢失可读和可解释性。在这里不优化空间。

注意事项:总是先得到小子串的回文判定,然后大子串才能参考小子串的判断结果,即填表顺序很重要。

图解:
在这里插入图片描述

# python3
class Solution:
    def longestPalindrome(self, s: str) -> str:
        l = len(s)
        if l < 2:
            return s
        dp = [[0] * l for _ in range(l)]
        maxlen, begin = 0, 0
        for j in range(l):
            for i in range(j+1):
                if s[i] == s[j]:
                    if j - i < 3:
                        dp[i][j] = 1
                    else:
                        dp[i][j] = dp[i+1][j-1]
                if dp[i][j] and j - i + 1 > maxlen:
                    maxlen = j - i + 1
                    begin = i
        return s[begin:begin+maxlen]

参考:

动态规划、中心扩散、Manacher 算法.
经典LIS系列.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值