对比分析 → 两个互相联系的指标进行比较
绝对数比较(相减) / 相对数比较(相除)
结构分析、比例分析、空间比较分析、动态对比分析
1.绝对数比较(相减)
在绝对数比较中,相互对比的指标在量级上不能差别过大
创建一组随机数,分别代表A产品的销量和B产品的销量
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
data = pd.DataFrame(np.random.rand(30,2)*1000
,columns = ['A_sale','B_sale']
,index = pd.period_range('20170601','20170630')
)
print(data.head())
A_sale B_sale
2017-06-01 196.136735 332.310339
2017-06-02 239.497573 4.565432
2017-06-03 761.122797 643.422245
2017-06-04 101.757850 630.286314
2017-06-05 185.142519 901.302321
data.plot(kind = 'line'
,style = '--.'
,alpha = 0.8
,title = 'AB产品销量对比——折线图'
,figsize = (20,6)
,fontsize = 15
,legend = True
)
data.plot(kind = 'bar'
,title = 'AB产品销量对比——柱状图'
,figsize = (20,6)
,fontsize = 15
)
在量级相同数据的对比中,绝对数比较就可以看出两组数据的相对关系。
因此我们还可以做柱状图堆叠图及差值折线图老探索数据
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = range(len(data))
y1 = data['A_sale']
y2 = -data['B_sale']
fig3 = plt.figure(figsize = (20,12))
ax1 = fig3.add_subplot(2,1,1)
plt.bar(x,y1)
plt.bar(x,y2)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.xticks(range(0,30,6))
ax1.set_xticklabels(data.index[::6])
ax2 = fig3.add_subplot(2,1,2)
plt.plot(x,y1+y2,'--o')
plt.axhline(0,linestyle = '--',color = 'r')#添加平行x轴的辅助线
#plt.axvline()#添加平行y轴的辅助线
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.xticks(range(0,30,