数据特征分析:对比分析

本文探讨了数据特征分析中的对比方法,包括绝对数比较(相减)和相对数比较(相除)。通过结构分析、比例分析、空间比较分析和动态对比分析,揭示数据之间的相对关系和差异。结构分析关注总体的内部结构,比例分析衡量不同部分的关系,空间比较分析揭示空间上的差异,动态对比分析则展示了现象随时间的发展变化。
摘要由CSDN通过智能技术生成


对比分析 → 两个互相联系的指标进行比较

绝对数比较(相减) / 相对数比较(相除)
结构分析、比例分析、空间比较分析、动态对比分析

1.绝对数比较(相减)

在绝对数比较中,相互对比的指标在量级上不能差别过大

创建一组随机数,分别代表A产品的销量和B产品的销量

plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
data = pd.DataFrame(np.random.rand(30,2)*1000
                   ,columns = ['A_sale','B_sale']
                   ,index = pd.period_range('20170601','20170630')
                   )
print(data.head())
                A_sale      B_sale
2017-06-01  196.136735  332.310339
2017-06-02  239.497573    4.565432
2017-06-03  761.122797  643.422245
2017-06-04  101.757850  630.286314
2017-06-05  185.142519  901.302321
data.plot(kind = 'line'
          ,style = '--.'
          ,alpha = 0.8
          ,title = 'AB产品销量对比——折线图'
          ,figsize = (20,6)
          ,fontsize = 15
          ,legend = True
         )
data.plot(kind = 'bar'
         ,title = 'AB产品销量对比——柱状图'
         ,figsize = (20,6)
         ,fontsize = 15
         )

在这里插入图片描述
在这里插入图片描述
在量级相同数据的对比中,绝对数比较就可以看出两组数据的相对关系。
因此我们还可以做柱状图堆叠图及差值折线图老探索数据

plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
x = range(len(data))
y1 = data['A_sale']
y2 = -data['B_sale']

fig3 = plt.figure(figsize = (20,12))
ax1 = fig3.add_subplot(2,1,1)
plt.bar(x,y1)
plt.bar(x,y2)
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.xticks(range(0,30,6))
ax1.set_xticklabels(data.index[::6])

ax2 = fig3.add_subplot(2,1,2)
plt.plot(x,y1+y2,'--o')
plt.axhline(0,linestyle = '--',color = 'r')#添加平行x轴的辅助线
#plt.axvline()#添加平行y轴的辅助线
plt.xticks(fontsize = 15)
plt.yticks(fontsize = 15)
plt.xticks(range(0,30,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值