爬楼梯问题

一道算法题,描述了计算上n阶楼梯的不同步数方案,其中n≤1000000,需要对结果取模1e9+7。给出了问题背景、输入输出要求以及代码实现,并解释了为何选择模1e9+7的原因。
摘要由CSDN通过智能技术生成

2038. 课堂作业-9-1

时间限制 1000 ms
内存限制 64 MB
题目描述
楼梯有n阶,可以一步上一阶、两阶或三阶,问有多少种不同的走法
由于答案很大,mod(1e9+7)输出

输入数据
一个正整数n,代表楼梯的阶数,n<=1000000

输出数据
方案数

样例输入
3
样例输出
4

这道题并不难,静下心来,思路很快就会出来,到达n阶楼梯的方案数有n-1,n-2,n-3决定。
代码如下:

#include<iostream>
#include<cstring>
using namespace std ;

//下面这三种方式都对
//const int M = 1000000007 ;
//#define M 1000000007     //切记没有分号
int M(1e9+7) ;  //这种方式不太懂,看同学这么写的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值