VoteNet:Deep Hough Voting for 3D Object Detection in Point Clouds论文解读

论文《DeepHoughVotingfor3DObjectDetectioninPointClouds》提出VoteNet,一种利用深度点集网络和霍夫投票的3D对象检测方法,解决点云数据稀疏性和3D中心定位难题,实现在SUNRGB-D和ScanNet上的先进性能。
摘要由CSDN通过智能技术生成

论文名:《Deep Hough Voting for 3D Object Detection in Point Clouds》

论文链接:ICCV 2019 Open Access Repositoryicon-default.png?t=N7T8https://openaccess.thecvf.com/content_ICCV_2019/html/Qi_Deep_Hough_Voting_for_3D_Object_Detection_in_Point_Clouds_ICCV_2019_paper.html(论文下载不了私信和我要也可以)

代码地址:https://github.com/facebookresearch/voteneticon-default.png?t=N7T8https://github.com/facebookresearch/votenet(代码下载不了私信和我要也可以)

一、论文贡献

目前3d点云检测方法的缺陷:

  1. 将不规则的点体素化到规则的3D网格中,然后使用3D CNN去检测,这种方法没有利用点云数据的稀疏性,使得计算成本很高。
  2. 使用3D场景的2D鸟瞰图,然后采用二维目标检测去定位目标,牺牲掉了物体的几何细节,特别实在室内场景中更加严重。

3d点云检测面临的挑战:

本论文尝试对点云进行目标检测,但却面临一个很大的难题:3D的物体的中心(质心)是远离物体的表面的,而点云中的点都是扫描物体表面得到的,这样点云的内部就是空心的,因此就很难去找到物体中心。

作者提出的方法:

为了应对这一挑战,作者提出了 VoteNet,这是一种基于深度点集网络和霍夫投票协同作用的端到端 3D 对象检测网络。我们的模型通过简单的设计、紧凑的模型尺寸和高效率,在两个大型真实 3D 扫描数据集 ScanNet 和 SUN RGB-D 上实现了最先进的 3D 检测。值得注意的是,VoteNet 通过使用纯粹的几何信息而不依赖彩色图像,优于以前的方法。通过直接处理点云数据,不仅避免了信息的损失,而且由于处理的点云数据的稀疏性,还可以降低计算代价。

论文贡献:

  • 通过端到端可微架构,在深度学习的背景下重新表述霍夫投票,我们将其称为 VoteNet。
  • SUN RGB-D 和ScanNet 上最先进的3D 对象检测性能。
  • 深入分析点云中3D 对象检测投票的重要性。

使用深度 Hough 投票模型进行点云中的 3D 对象检测。给定 3D 场景的点云,我们的 VoteNet 投票给对象中心,然后对投票进行分组和聚合,以预测 3D 边界框和对象的语义类别

二、VoteNet网络结构

VoteNet总体网络结构如下:

  1. 网络结构由原始点云输入,维度为(20000,3),代表输入20000个点云,每个点云都有xyz三个坐标
  2. 作者使用pointnet++骨干网络提取特征,骨干网络的输入为原始点云,维度为(20000,3),pointnet++主要通过4层SA模块和2层FP模块进行特征提取,这里就先不在讲述了,经过骨干网络提取出来1024个点,这些点称为种子点(或兴趣点),种子点坐标维度为(8,1024,3),种子点的特征维度为(8,1024,256),8是batch,1024是种子点的个数,3是xyz坐标,256是特征数
  3. 将提取出来的种子点送到votelayer进行投票,这里种子点特征将通过三层一维卷积和两层BN层,输出一个张量offset,维度为(8,1024,1,259),votelayer输出的是种子点到投票点的位移偏移量offset以及投票点的特征vote_features,所以要的到投票点的坐标需要用种子点的坐标加上得到的偏移量,vote_xyz=seed_xyz+offset,投票点坐标的维度也是(8,1024,3),投票点的特征是将输出特征加上种子点特征得到的vote_features=seed_features+offset,(由于输出的维度和种子点维度不一致,这里还需要将维度进行变换才可以相加)
  4. 得到投票点坐标以及投票点特征后需要对投票点进行聚合,作者使用的是pointnet中的SA模块进行聚合,将1024个投票点聚合成256个点aggregated_points,维度为(8,256,3),其特征为aggregated_features(8,256,128)
  5. 将聚合好的投票点进行候选框预测, 每个聚合后的点会投票产生一个候选结果。根据聚合后的特征,VoteNet通过分类head和回归head产生预测的候选框结果。aggregated_features(256x128)通过两层一维卷积进行更深层特征提取,提取后的特征分别经过一层卷积得到分类预测结果cls_precls_predictions(256x12)和位置回归预测结果reg_predictions(256x67)
  6. 最后一步就是将结果进行解码,预测结果如何与真实标签关联需要一一进行解码。真实标签主要包含目标有无、类别标签和目标回归位置。

三、 VoteNet损失函数

VoteNet的损失函数包含以下内容:

  • box_loss:物体框损失,用于评估物体框的质量和准确度。

  • center_loss:中心点损失,用于保证目标中心点的准确性。

  • header_cls_loss:物体方向(角度)分类损失,用于检测物体的动作。

  • header_reg_loss:物体方向(角度)回归损失,用于精细调整物体的回转。

  • loss:总体损失,通常是上述各个损失的组合。

  • neg_ratio:负样本比例,表示负样本在训练数据中所占的比例。

  • obj_acc:目标检测精度,表示检测到的目标与实际目标的匹配精度。

  • objectness_loss:目标性损失,通常用于评估物体检测的置信度。

  • pos_ratio:正样本比例,表示正样本在训练数据中所占的比例。

  • sem_cls_loss:语义分类损失,用于将物体分割成不同的语义类别。

  • size_cls_loss:尺寸分类损失,用于将货物按照不同的尺寸分类。

  • size_reg_loss:尺寸恢复损失,用于精确调整工件的尺寸。

  • vote_loss:投票损失,通常与点云处理和物体检测中的投票过程相关。

最终损失函数公式为:

其中

这里说一下投票损失,公式为

这个公式中Mpos代表在物体表面的种子总数 ,[Si on object]代表种子点Si是否在物体表面,

这一部分计算的是 真实的坐标偏移量和预测坐标偏移量的差。

四、实验结果

作者分别在SUN RGB-D数据集和ScanNetV2数据集上进行验证,结果如下:

参考链接:

 VoteNet论文速读__点云数据处理 - 知乎论文名称:Deep Hough Voting for 3D Object Detection in Point Clouds 作者信息: 代码开源:https://github.com/ facebookresearch/votenetICCV 2019 Oral 因为看不明白今年的点云论文,跑去看P2B,结果发现P2B…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/430432445

 【3D目标检测】VoteNet-CSDN博客文章浏览阅读1w次,点赞15次,收藏74次。Deep Hough Voting for 3D Object Detection in Point Clouds一、论文贡献二、模型实现2.1 霍夫投票2.2 VoteNet2.2.1 总体架构2.2.2 Point cloud feature learning2.2.3 Hough voting with deep networks2.2.4 Object Proposal and Clas..._votenethttps://blog.csdn.net/weixin_39373480/article/details/103583523?spm=1001.2101.3001.6650.2&utm_medium=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-2-103583523-blog-127247909.235%5Ev38%5Epc_relevant_yljh&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2~default~CTRLIST~Rate-2-103583523-blog-127247909.235%5Ev38%5Epc_relevant_yljh&utm_relevant_index=5

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: Deep Hough投票是一种用于点云中3D物体检测的技术。它通过将点云中的点转换为球形坐标系,并使用Hough变换来检测物体的位置和方向。然后,使用深度学习模型对检测到的物体进行分类和定位。Deep Hough投票可以在点云中实现高效的3D物体检测,具有较高的准确性和鲁棒性。 ### 回答2: 深度霍夫投票算法是一种用于三维物体检测的深度学习算法,通过对点云数据进行处理,可以对三维场景中的物体进行检测和定位。该算法采用分层投票框架,可以通过处理多层信息来提高检测的准确性和鲁棒性。同时,深度霍夫投票算法还支持基于多个检测器进行联合训练,从而进一步提高检测效果。 在基于点云的三维物体检测领域中,传统的基于滑动窗口的方法往往需要大量的计算资源,并且受限于点云的分辨率和噪声的影响,易受到误差的影响。相比之下,深度霍夫投票算法利用深度神经网络的学习能力和点云数据自身的空间信息,能够更好地处理点云数据,提高检测精度和鲁棒性。 具体来说,深度霍夫投票算法主要采用以下步骤进行三维物体检测: 1. 首先,将点云数据分割成不同的体素(voxels),并对每个体素进行特征提取,得到每个体素的特征向量。 2. 接着,根据特征向量来训练深度神经网络,学习不同类别的物体模型。通过对网络进行多次迭代训练,可以提高模型的准确度。 3. 在测试阶段,利用学习到的模型对新的点云数据进行检测。首先,通过滑动窗口的方式生成候选框,并对每个候选框进行特征提取和分类。然后,通过分层投票的方式来评估每个候选框的得分,从而确定最终的物体检测结果。 总的来说,深度霍夫投票算法是一种高效、准确的三维物体检测算法,可以广泛应用于自动驾驶、机器人控制、航空航天等领域。未来,随着深度学习技术的进一步发展,该算法在三维物体检测领域将有更广泛的应用前景。 ### 回答3: Deep Hough Voting(DHV)是一种基于3D点云的对象检测方法,它的主要思想是在点云中识别出物体的各种姿态和形状,并在一张基础投票图上对这些信息进行统计和融合,最终通过投票图得出物体的位置、姿态和边界框等信息。 DHV算法的核心是基于深度学习的特征提取和感知分组技术。在实际应用中,DHV需要对点云数据进行强化,以保证数据质量和精度,这些强化措施包括点云分割、采样增强和反向随机化等。DHV还利用了传统计算机视觉Hough Voting思想,将点云中多个物体的姿态信息进行统计,并结合深度学习网络的输出进行融合,以得出最终的物体检测结果。 DHV方法具有很强的适应性和泛化性,可以广泛应用于各种不同场景和对象的检测和定位。在实际应用中,DHV可以有效提高3D点云数据的处理效率和准确性,尤其适用于无人驾驶车辆、机器人和虚拟现实等领域。DHV不仅可提高对象识别的速度和精度,而且可以减少传输和存储数据的量,这对于应用于大规模数据处理具有重要意义。 总之,DHV对于3D点云数据的物体检测和识别具有很强的技术实力和潜在应用前景,将会在计算机视觉和智能控制领域逐渐得到更广泛的应用和推广。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值