【一起学】实时人脸识别项目(4)Adaboost人脸检测

目录

Haar特征降维及特征值标准化

总结

Haar特征值积分图

总结


Haar特征降维及特征值标准化

        了解了大量的Haar特征用于训练和检测时所面临的计算量问题,接下来的问题是如何计算Haar特征值

Haar特征值 = 整个Haar区域内像素和 × 权重+黑色区域内像素和 × 权重:

featureValue(x) = weight_{all} \times \sum_{Pixel \in all} Pixel + weight_{black} \times \sum_{Pixel \in black} Pixel

对于x3和y3特征,weightall = -1,weightblack = 3;

对于point特征, weightall = -1,weightblack = 9;

其余11种特征均为 weightall= -1,weightblack = 2。

例如:
对于x2特征:       (黑+白) × (-1) + 黑 × 2 = 黑 – 白;
对于Point特征:  (黑+白) × (-1) + 黑 × 9 = 8 × 黑 - 白。
 

Haar特征如何保存? 

        对应的,在OpenCV XML文件中(文件下载链接),每一个Haar特征都被保存在2~3个形如:<x y width height weight>的标签中,如下图所示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值