PyTorch 实现mint手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

编译器:colab

目录

一:前期准备

1.设置GPU

2.导入数据

3. 数据可视化

二:构建简单的CNN网络

三:训练模型

1.设置超参数

2.编写训练函数

3.编写测试函数

4.正式训练

四:结果可视化


一:前期准备

1.设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
from torch.utils.data import DataLoader


device = torch.device("cuda"if torch.cuda.is_available() else "cpu")
device

2.导入数据

使用dataset下载MNIST数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

torchvision.datasets 是python自带的一个数据库,我们可以通过代码在线下载数据。

函数原型:

torchvision.datatsets.MNIST(root,train = True,transform = None,target_transform = None,download = False)

参数说明:

  • root(string):数据地址
  • train(string): True-训练集,False-测试集
  • transform(callable,optinal):这里的参数选择一个你想要的数据转换函数,直接完成数据转化
  • target_transform(callable,optional):接受目标并对其进行转换的函数
  • download(bool,optional):如果为True,从互联网上下载数据集,并把数据集放在root目录下
train_ds = torchvision.datasets.MNIST(root='./data',train = True, transform= torchvision.transforms.ToTensor(),download = True)
test_ds = torchvision.datasets.MNIST(root='./data',train = False,transform = torchvision.transforms.ToTensor(),download = True)

torch.utils.data.DataLoader 是pytorch 自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。

函数原型:

torch.utils.data.DataLoader(datasetbatch_size=1shuffle=Nonesampler=Nonebatch_sampler=Nonenum_workers=0collate_fn=Nonepin_memory=Falsedrop_last=Falsetimeout=0worker_init_fn=Nonemultiprocessing_context=Nonegenerator=None*prefetch_factor=2persistent_workers=Falsepin_memory_device='')

参数说明:

  • dataset(string): 加载的数据集
  • batch_size(int,optional):每批加载的样本大小(默认值为1)
  • shuffle(bool,optional):如果为True,每个epoch重新排列数据。
  • sampler(Sampler or iterable,optionla):定义从数据集中抽取样本的策略。可以是任何实现了 _len_的Iterable。如果指定,则不得指定shuffle。
  • batch_sampler(Sampler or iterable,optionla):类似于sampler,但一次返回一批索引。与batch_size,shuffle,sampler 和 drop_last 互斥。
  • num_workers(int,optional):用于数据加载的子进程数。0表示数据将在主进程中加载(默认值:0)
  • pin_momory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional):如果数据集大小不能被批次大小整除,则设置为True以删除最后一个不完整的批次。如果为False并且数据集的大小不能被批大小整除,则最后一批将保留。
  • timeout(numeric,optional):设置数据读取的超出时间,超过这个时间还没读取到数据的话就会报错。(默认值为0)
  • worker_init_fn(callable,optional):如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入(默认为None)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds,batch_size = batch_size,shuffle = True)

test_dl = torch.utils.data.DataLoader(test_ds,batch_size = batch_size)

#取一个批次查看数据格式
#数据的shape为:[batch_size,channel,height,weight]
#其中batch_size 为自己设定,channel,height,weight分别为图片的通道数,高度和宽度
imgs,labels = next(iter(train_dl))
images.shape

3. 数据可视化

squeeze()函数的功能是从矩阵shape中,去掉纬度为1的。例如一个矩阵的shape是(5,1),使用过这个函数后,结果为(5,).

import numpy as np

#指定图片大小,图像大小为20宽,5高的绘图(单位为英尺inch)
plt.figure(figsize =(20,5))
for i,imgs in enumerate(imgs[:20]):
    #纬度缩减
    npimg = np.squeeze(imgs.numpy())
    #将整个figure分成2行10列,绘制第i+1个子图
    plt.subplot(2,10,i+1)
    plt.imshow(npimg,cmap = plt.cm.binary)
    plt.axis('off')#关掉坐标轴的标签

#plt.show() #加上这段如果使用的是pycharm编译器

二:构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用来将图片分类。

  • nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核的大小
  • nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小
  • nn.ReLU为激活函数,使模型可以拟合非线性数据
  • nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数(输入特征数由特征提取网络计算得到,如果不会计算可以直接运行网络,报错中会提示输入特征数的大小,下方网络中第一个全连接层的输入特征数为1600)
  • nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍。
import torch.nn.functional as F
num_classes = 10 #图片的类别数由0到9

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        #特征提取网络
        self.conv1 = nn.Conv2d(1,32,kernel_size =3)
        self.pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32,64,kernel_size =3)
        self.pool2 = nn.MaxPool2d(2)

        #分类网络
        self.fc1 = nn.Linear(1600,64)
        self.fc2 = nn.Linear(64,num_classes)
        
    #前向传播
    def forward(self,x):
        x = self.pool1(F.relu(self.conv1(x))
        x = self.pool2(F.relu(self.conv2(x))
        x = torch.flatten(start_dim=1)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        
        return x 

数值解释:

由先前输出的图片数据可知,每个图像的height,weight,channel分别为(28,28,1).

第一层卷积("conv1"):

我们令卷积核大小为3*3,填充(padding)默认为0,步长(stride)默认为1.

使用计算公式输出尺寸:

Output Size = (\frac{Input Size-kernel Size +2*padding}{Stride})+1

Width and Height =(\frac{28-3+0}{1})+1=26

因此,卷积后的尺寸为26*26*32(32是输出通道数)

第一层池化("pool1"):

池化窗口:2*2

步长默认为与池化窗口大小相同,即2

使用计算公式输出尺寸:

Width and Height =(\frac{26-2+0}{2})+1=13

因此池化后的尺寸为13*13*32

第二层卷积("cov2'):

Width and Height =(\frac{13-3+0}{1})+1=11

卷积后的尺寸为11*11*64

第二层池化("pool2"):

Width and Height =(\frac{11-2+0}{2})+1=5.5\approx 5 

(向下取整)

Flatten 层

将5*5*64的输出展平:5*5*64 = 1600

加载并打印模型:

from torching import summary
#将模型转移到GPU或者cpu中
model = Model().to(device)
summary(model)

三:训练模型

1.设置超参数

loss_fn = nn.CrossEntropyLoss()#创建损失函数
learn_rate = le-2 #学习率
opt = torch.optim.SGD(model.parameters(),lr = learn_rate)

2.编写训练函数

1.optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。因此在执行反向传播之前,需要调用此方法清除历史梯度信息。

2.loss.backward()

函数的作用是根据损失函数计算模型参数的梯度。Pytorch的反向传播即tensor。backward()是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里去。更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads 为True,则w的所有上层参数的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。如果没有进行tensor.backword()的话,梯度值将会是None,因此 loss.backward()要写在 optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度 tensor.backward()方法产生的。

#训练循环
def train(dataloader,model,loss_fn,optimizer):
    size = len(dataloader.dataset) #训练集的大小一共60000张图片
    num_batches = len(dataloader)#批次数目,1875(60000/32)
    
    train_loss,train_acc = 0,0 #初始化训练损失和正确率
    for X,y in dataloader:#获取图片及其标签
        X,y = X.to(device),y.to(device)

        #计算预测误差
        pred = model(X) #网络输出
        loss = loss_fn(red,y) #计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        #反向传播
        optimizer.zero_grad() #grad属性归零
        loss.backward() #反向传播
        optimizer.step() #每一步进行自动更新

        #记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches
    
    return train_acc,train_loss
  • pred.argmax(1) 返回数组pred在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中pred是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否准(True表示正确,False表示错误)
  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将True转为1.0,将False转换为0.0。
  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。
  • .item()将求和结果转换为标量值,以便在Python中使用或打印。

(pred.argmax(1)==y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

3.编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader,model,loss_fn):
    size = len(dataloader.dataset) #测试集的大小,一共10000张图片
    num_batches = len(dataloader) #批次数目,313(10000/32 = 312.5,向上取整)
    test_loss,test_acc = 0,0
    
    #当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for images,target in dataloader:
            imgs,target = imgs.to(device),target.to(device)
            
            #计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred,target)
            
            test_loss += loss.item()
            test_loss +=(target_pred.argmax(1)== target).type(torch.float).sum().item()
    
    test_acc /= size
    test_loss /= num_batches
    
    return test_acc,test_loss
    

4.正式训练

1.model.train()(训练模式)

model.train()的作用是启用Batch Normalization 和 Dropout.

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train(). model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout, model.train()是随机取一部分网络连接来训练更新参数。

2.model.eval()(评估模式)

model.eval()的作用是不启用Batch Normalization 和 Dropout。

如果模型中有BN层和Dropout,在测试时添加model.eval().model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。

epochs = 5
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc,epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

四:结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值