pandas (七)数据合并

数据合并

# 合并拼接行
# 将df2中的行添加到df1的尾部
df1.append(df2)
# 指定列合并成一个新表新列
ndf = (df['提名1']
       .append(df['提名2'], ignore_index=True)
       .append(df['提名3'], ignore_index=True))
ndf = pd.DataFrame(ndf, columns=(['姓名']))
# 将df2中的列添加到df1的尾部
df.concat([df1, df2], axis=1)

# 合并文件的各行
df1 = pd.read_csv('111.csv', sep='\t')
df2 = pd.read_csv('222.csv', sep='\t')
excel_list = [df1, df2]
# result = pd.concat(excel_list).fillna('')[:].astype('str')
result = pd.concat(excel_list)[]
result.to_excel('333.xlsx', index=False)

# 合并指定目录下所有的 excel (csv) 文件
import glob
files = glob.glob("data/cs/*.xls")
dflist = []
for i in files:
    dflist.append(pd.read_excel(i, usecols=['ID', '时间', '名称']))

df = pd.concat(dflist)

# 合并增加列
# 对df1的列和df2的列执行SQL形式的join
df1.join(df2,on=col1,how='inner')
# 用 key 合并两个表
df_all = pd.merge(df_sku, df_spu, 
                  how='left',
                  left_on=df_sku['product_id'],
                  right_on=df_spu['p.product_id'])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值