/*
程序说明:本程序模拟演示了图的邻接表存储,以及图的深度和广度优先遍历
这里我选择用链表来存储边,用队列来存储顶点,其实可以调用C++的相关容器,例如:list,deque,vector等。
我之所以自己写一遍是为了复习之前所学。
注意:我的顶点是从0开始,但是实际顶点个数从1开始计数,即没有第0个顶点,如果你从1开始输入,
那么就会造成数组下标越界,导致栈溢出。如果要测试复杂的连通图,可以适当将MAX_VERTEX_NUM调大。
*/
#include <iostream>
#include <cstdlib>
using namespace std;
#define MAX_VERTEX_NUM 5 //顶点的个数
typedef struct ArcNode
{
//单链表中结点的类型
int adjvex; //该边指向的顶点在顺序表中的位置(数组下标)
struct ArcNode *next; //下一条边
}ArcNode;
typedef struct VNode
{
//顶点类型
int data; //顶点中的数据信息
ArcNode *firstarc; //指向单链表,即指向第一条边
}VNode;
typedef struct QNode
{
int data; //链队列结点中的数据域
struct QNode *next; //链队列结点中的指针域
}QNode,*QueuePtr;
typedef struct
{
QueuePtr front; //队头指针
QueuePtr rear; //队尾指针
}LinkQueue;
int visited[MAX_VERTEX_NUM]={0,0,0,0,0}; //定义访问标志数组
//重载输入输出,即>>和<<
istream &operator>>(istream &in,VNode &G)
{
in>>G.data;
return in;
}
ostream &operator<<(ostream &out,const VNode &G)
{
out<<G.data;
return out;
}
//创建图
void CreateGraph(int n,VNode G[])
{
int i,e;
ArcNode *p,*q=NULL;
cout<<"请输入顶点的信息:"<<endl;
for(i=0;i<n;i++)
{
cin>>G[i];
G[i].firstarc=NULL; //初始化第一条边为空
}
for(i=0;i<n;i++)
{
cout<<"创建第"<<i+1<<"个顶点的边(输入-1结束):"<<endl;
cin>>e;
while(e!=-1)
{
ArcNode *p=new ArcNode(); //创建一条边
p->next=NULL;
p->adjvex=e;
if(G[i].firstarc==NULL)
{
G[i].firstarc=p; //i结点的第一条边
}
else
{
q->next=p; //下一条边
}
q=p;
cin>>e;
}
}
}
//返回第一邻接点在数组中的下标
int FirstAdj(Vnode G[],int v)
{
if(G[v].firstarc!=NULL)
{
return (G[v].firstarc)->adjvex;
}
return -1;
}
//返回下一个邻接点在数组中的下标
int NextAdj(VNode G[],int v,int w)
{
ArcNode *p;
p=G[v].firstarc;
while(p!=NULL)
{
if(p->adjvex==w && p->next!=NULL)
{
return p->next->adjvex;
}
p=p->next;
}
return -1;
}
//深度优先搜索一个连通图
void DFS(VNode G[],int v)
{
int w;
cout<<G[v]<<" "; //访问当前顶点并打印信息
visited[v]=1; //将顶点v对应的访问标记置1
w=FirstAdj(G,v); //找到顶点v的一个邻接点,否则返回-1
while(w!=-1)
{
if(visited[w]==0) //该顶点未被访问
{
DFS(G,w); //递归的进行深度优先遍历
}
w=NextAdj(G,v,w); //找到顶点v的下一个邻接点,否则返回-1
}
}
//对图G=(V,E)进行深度优先搜索的主算法
void Travel_DFS(VNode G[],int n)
{
int i;
for(i=0;i<n;i++)
{
visited[i]=0; //将标记数组初始化为0
}
for(i=0;i<n;i++)
{
//若有顶点未被访问,则从该顶点开始继续深度优先遍历
if(visited[i]==0)
{
DFS(G,i);
}
}
}
//初始化一个空队列
void initQueue(LinkQueue *q)
{
//创建一个头结点,队头指针和队尾指针指向该节点
q->front=q->rear=new QNode();
//创建头结点失败
if(!q->front)
{
return;
}
q->front->next=NULL; //头结点指针域置空
}
void EnQueue(LinkQueue *q,int e)
{
//创建一个队列元素结点
QueuePtr p=new QNode();
//创建元素结点失败
if(p==NULL)
{
return;
}
p->data=e; //将数据e存放到队列结点的数据域中
p->next=NULL; //指针域置空
q->rear->next=p; //从队尾插入节点
q->rear=p; //修改队尾指针
}
//如果队列q不为空,删除q的队头元素,用e返回其值
void DeQueue(LinkQueue *q,int e)
{
QueuePtr p;
//队列为空,返回
if(q->front==q->rear)
{
return;
}
p=q->front->next; //p指向队列的第一个元素
*e=p->data; //将队首元素的数据赋值给e返回
q->front->next=p->next; //删除头结点
//如果此时队列为空,则修改队尾指针
if(q->rear==p)
{
q->rear=q->front;
}
delete p;
}
//判断队列是否为空
int emptyQ(LinkQueue *q)
{
if(q->rear==q->front)
{
return 1;
}
return 0;
}
//广度优先搜索一个连通图
void BFS(VNode G[],int v)
{
int w;
LinkQueue q;
initQueue(&q);
cout<<G[v]<<" "; //访问顶点v
visited[v]=1; //将顶点v的访问标记置1
EnQueue(&q,v); //顶点v入队列
while(!emptyQ(&q))
{
DeQueue(&q,&v); //出队列,元素由v返回
w=FirstAdj(G,v); //找到顶点v的第一个邻接点,否则返回-1
while(w!=-1)
{
if(visited[w]==0)
{
cout<<G[w]<<" ";
EnQueue(&q,w); //顶点w入队列
visited[w]=1;
}
w=NextAdj(G,v,w); //找到顶点v的下一个邻接点,否则返回-1
}
}
}
void Travel_BFS(VNode G[],int n)
{
int i;
for(i=0;i<n;i++)
{
visited[i]=0; //初始化标记数组
}
for(i=0;i<n;i++)
{
//若有顶点未被访问,则从该顶点开始继续广度优先遍历
if(visited[i]==0)
{
BFS(G,i);
}
}
}
//重置访问标记数组
void resetVisitedTrace()
{
int i;
for(i=0;i<MAX_VERTEX_NUM;i++)
{
visited[i]=0;
}
}
int main()
{
VNode G[MAX_VERTEX_NUM]; //图中顶点的存储容器
CreatGraph(MAX_VERTEX_NUM,G);
cout<<"深度优先遍历结果:"<<endl;
Travel_DFS(G,MAX_VERTEX_NUM);
resetVisitedTrace();
cout<<endl;
cout<<"广度优先遍历结果:"<<endl;
Travel_BFS(G,MAX_VERTEX_NUM);
cout<<endl;
system("pause");
return 0;
}
测试结果展示