原题目
第一题
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
节点的左子树只包含小于当前节点的数。
节点的右子树只包含大于当前节点的数。
所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
输入:
2
/ \
1 3
输出: true
示例 2:
输入:
5
/ \
1 4
/ \
3 6
输出: false
解释: 输入为: [5,1,4,null,null,3,6]。
根节点的值为 5 ,但是其右子节点值为 4 。
来源:力扣(LeetCode)
点击进入题目
第二题
二叉搜索树中的两个节点被错误地交换。
请在不改变其结构的情况下,恢复这棵树。
示例 1:
输入: [1,3,null,null,2]
1
/
3
\
2
输出: [3,1,null,null,2]
3
/
1
\
2
示例 2:
输入: [3,1,4,null,null,2]
3
/ \
1 4
/
2
输出: [2,1,4,null,null,3]
2
/ \
1 4
/
3
进阶:
使用 O(n) 空间复杂度的解法很容易实现。
你能想出一个只使用常数空间的解决方案吗?
来源:力扣(LeetCode)
点击进入题目
题目分析
第一题
方法一:找每个节点左子树最大值和右子树最小值,与其当前节点比较,左子树最大值要小于当前节点,右子树最小值要大于当前节点
方法二:确定每个节点所在的区间,先定义根节点的区间为负无穷到正无穷,然后不断的缩小区间,以当前节点为分界线,划分新区间,判断下一节点在不在区间内
方法三:将方法二改迭代dfs模拟2的前序遍历,bfs模拟层序遍历
方法四:用中序遍历比较前后两个值是否为递增,中序递归
方法无:方法四改迭代
第二题
方法一:按中序遍历将节点存入数组中,二叉搜索树的中序遍历是按从小到大排列的,所以如果有两个节点交换,如果是相邻节点则有一个前者小于后者的情况,如果交换的节点不相邻则有两个前者小于后者的情况,找到这两个节点,将两者的值进行交换即可
方法二:
1.根节点和左子树的某个数字交换 -> 由于根节点大于左子树中的所有数,所以交换后我们只要找左子树中最大的那个数,就是所交换的那个数
2.根节点和右子树的某个数字交换 -> 由于根节点小于右子树中的所有数,所以交换后我们只要在右子树中最小的那个数,就是所交换的那个数
3.左子树和右子树的两个数字交换 -> 找左子树中最大的数,右子树中最小的数,即对应两个交换的数
4.左子树中的两个数字交换
5.右子树中的两个数字交换
方法三:改进方法一:递归中序遍历,用一个变量存储中序遍历上一个节点,与当前节点比较,找到前者小于后者的节点,进行交换
放法四:栈版中序遍历,递归改迭代
方法五:Morris 版中序遍历:Morris中序遍历就是将一颗二叉树线索化,
完整代码
方法一:
bool isValidBST(struct TreeNode* root){
if (root == NULL || root->left == NULL && root->right == NULL) {
return true;
}
//左子树是否合法
if (isValidBST(root->left)) {
if (root->left != NULL) {
int max = getMaxOfBST(root->left);//得到左子树中最大的数
if (root->val <= max) { //相等的情况,代表有重复的数字
return false;
}
}
} else {
return false;
}
//右子树是否合法
if (isValidBST(root->right)) {
if (root->right != NULL) {
int min = getMinOfBST(root->right);//得到右子树中最小的数
if (root->val >= min) { //相等的情况,代表有重复的数字
return false;
}
}
} else {
return false;
}
return true;
}
int getMinOfBST(struct TreeNode *root) {
int min = root->val;
while (root != NULL) {
if (root->val <= min) {
min = root->val;
}
root = root->left;
}
return min;
}
int getMaxOfBST(struct TreeNode *root) {
int max = root->val;
while (root != NULL) {
if (root->val >= max) {
max = root->val;
}
root = root->right;
}
return max;
}
方法二:
bool getAns(struct TreeNode *root, long minVal, long maxVal)
{
if(root==NULL)return true;
if(root->val<=minVal||root->val>=maxVal)
{
return false;
}
return getAns(root->left,minVal,root->val)&&getAns(root->right,root->val,maxVal);
}
bool isValidBST(struct TreeNode* root){
return getAns(root,LONG_MIN,LONG_MAX);
}
方法三:
dfs
typedef struct MyNode{
struct TreeNode *root;
long minVal;
long maxVal;
}MyNode;
bool isValidBST(struct TreeNode* root){
if(root==NULL)return true;
MyNode stack[1000];
int top=0;
stack[top].root=root;
stack[top].minVal=LONG_MIN;
stack[top].maxVal=LONG_MAX;
top++;
while(top)
{
MyNode s=stack[--top];
if(s.root->val<=s.minVal||s.root->val>=s.maxVal)return false;
if(s.root->right)
{
stack[top].root=s.root->right;
stack[top].minVal=s.root->val;
stack[top].maxVal=s.maxVal;
top++;
}
if(s.root->left)
{
stack[top].root=s.root->left;
stack[top].minVal=s.minVal;
stack[top].maxVal=s.root->val;
top++;
}
}
return true;
}
bfs
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
typedef struct MyNode{
struct TreeNode *root;
long minVal;
long maxVal;
}MyNode;
bool isValidBST(struct TreeNode* root){
if(root==NULL)return true;
MyNode queue[1000];
int front=0,rear=0;
queue[rear].root=root;
queue[rear].minVal=LONG_MIN;
queue[rear].maxVal=LONG_MAX;
rear++;
while(front!=rear)
{
MyNode s=queue[front];
front=(front+1)%1000;
if(s.root->val<=s.minVal||s.root->val>=s.maxVal)return false;
if(s.root->left)
{
queue[rear].root=s.root->left;
queue[rear].minVal=s.minVal;
queue[rear].maxVal=s.root->val;
rear=(rear+1)%1000;
}
if(s.root->right)
{
queue[rear].root=s.root->right;
queue[rear].minVal=s.root->val;
queue[rear].maxVal=s.maxVal;
rear=(rear+1)%1000;
}
}
return true;
}
方法四:
bool inorder(struct TreeNode *root,long *minVal){
if(root==NULL)return true;
if(inorder(root->left,minVal)==false)return false;
if(root->val<=*minVal)return false;
*minVal=root->val;
return inorder(root->right,minVal);
}
bool isValidBST(struct TreeNode* root){
long minVal=LONG_MIN;
return inorder(root,&minVal);
}
迭代:
bool isValidBST(struct TreeNode* root){
struct TreeNode *stack[1000];
int top=0;
struct TreeNode *pre=NULL;
while(root||top)
{
while(root)
{
stack[top++]=root;
root=root->left;
}
root=stack[--top];
if(pre!=NULL&&root->val<=pre->val)
return false;
pre=root;
root=root->right;
}
return true;
}
第二题
方法一:
int resSize;
void traverse(struct TreeNode *root,struct TreeNode *list[])
{
if(root->left)
traverse(root->left,list);
list[resSize++]=root;
if(root->right)
traverse(root->right,list);
}
void recoverTree(struct TreeNode* root){
struct TreeNode *list[1000],*s1=NULL,*s2=NULL;
resSize=0;
traverse(root,list);
for(int i=0;i<resSize-1;i++)
{
if(s1==NULL&&list[i]->val>list[i+1]->val)
{
s1=list[i];
s2=list[i+1];
}
else if(list[i]->val>list[i+1]->val)
{
s2=list[i+1];
}
}
int temp=s1->val;
s1->val=s2->val;
s2->val=temp;
return root;
}
方法二:
struct TreeNode *getMinNode(struct TreeNode *root){
if(root==NULL)return NULL;
struct TreeNode *minLeft=getMinNode(root->left);
struct TreeNode *minRight=getMinNode(root->right);
struct TreeNode *min=root;
if(minLeft!=NULL&&min->val>minLeft->val)
{
min=minLeft;
}
if(minRight!=NULL&&min->val>minRight->val)
{
min=minRight;
}
return min;
}
struct TreeNode *getMaxNode(struct TreeNode *root){
if(root==NULL)return NULL;
struct TreeNode *maxLeft=getMaxNode(root->left);
struct TreeNode *maxRight=getMaxNode(root->right);
struct TreeNode *max=root;
if(maxLeft!=NULL&&max->val<maxLeft->val)
{
max=maxLeft;
}
if(maxRight!=NULL&&max->val<maxRight->val)
{
max=maxRight;
}
return max;
}
void swap(int *a,int *b){
int temp=*a;
*a=*b;
*b=temp;
}
void recoverTree(struct TreeNode* root){
if(root==NULL)return;
struct TreeNode *maxLeft=getMaxNode(root->left);
struct TreeNode *minRight=getMinNode(root->right);
if(minRight!=NULL&&maxLeft!=NULL)
{
if(minRight->val<root->val&&maxLeft->val>root->val)
{
swap(&minRight->val,&maxLeft->val);
}
}
if(minRight!=NULL){
if(minRight->val<root->val)
{
swap(&minRight->val,&root->val);
}
}
if(maxLeft!=NULL)
{
if(maxLeft->val>root->val)
{
swap(&maxLeft->val,&root->val);
}
}
recoverTree(root->left);
recoverTree(root->right);
}
方法三:
struct TreeNode *pre,*firstNode,*secondNode;
void inorderTraversal(struct TreeNode *root){
if(root==NULL)return;
inorderTraversal(root->left);
if(pre!=NULL&&pre->val>root->val)
{
if(firstNode==NULL){
firstNode=pre;
secondNode=root;
}
else
{
secondNode=root;
}
}
pre=root;
inorderTraversal(root->right);
}
void swap(int *a,int *b){
int temp=*a;
*a=*b;
*b=temp;
}
void recoverTree(struct TreeNode* root){
pre=firstNode=secondNode=NULL;
inorderTraversal(root);
swap(&firstNode->val,&secondNode->val);
}
方法四:
struct TreeNode *pre,*firstNode,*secondNode;
void swap(int *a,int *b){
int temp=*a;
*a=*b;
*b=temp;
}
void inorderTraversal(struct TreeNode *root){
if(root==NULL)return NULL;
struct TreeNode *stack[1000];
int top=0;
while(root!=NULL||top!=0)
{
while(root!=NULL)
{
stack[top++]=root;
root=root->left;
}
root=stack[--top];
if(pre!=NULL&&root->val<pre->val)
{
if(firstNode==NULL)
{
firstNode=pre;
secondNode=root;
}
else
{
secondNode=root;
}
}
pre=root;
root=root->right;
}
}
void recoverTree(struct TreeNode* root){
pre=firstNode=secondNode=NULL;
inorderTraversal(root);
swap(&firstNode->val,&secondNode->val);
}
方法五:
struct TreeNode *pre_new,*firstNode,*secondNode;
void swap(int *a,int *b){
int temp=*a;
*a=*b;
*b=temp;
}
void inorderTraversal(struct TreeNode *root){
struct TreeNode *cur=root,*pre;
while(cur!=NULL)
{//情况一
if(cur->left==NULL)
{
/**********************************************/
if(pre_new!=NULL&&cur->val<pre_new->val)
{
if(firstNode==NULL)
{
firstNode=pre_new;
secondNode=cur;
}
else
{
secondNode=cur;
}
}
pre_new=cur;
/***********************************************/
cur=cur->right;
}
else
{//找左子树最右节点
pre=cur->left;
while(pre->right!=NULL&&pre->right!=cur)
{
pre=pre->right;
}
//情况2.1
if(pre->right==NULL)
{
pre->right=cur;
cur=cur->left;
}
//情况2,2
if(pre->right==cur)
{
pre->right=NULL;//恢复为null
/****************************************/
if(pre_new!=NULL&&cur->val<pre_new->val)
{
if(firstNode==NULL)
{
firstNode=pre_new;
secondNode=cur;
}
else
{
secondNode=cur;
}
}
pre_new=cur;
/****************************************/
cur=cur->right;
}
}
}
}
void recoverTree(struct TreeNode* root){
pre_new=firstNode=secondNode=NULL;
inorderTraversal(root);
swap(&firstNode->val,&secondNode->val);
}