离散数学期末复习总结

题库:链接:https://pan.baidu.com/s/1rFcl__YxTXkXBuqDl3MASg
提取码:0000

第一章 命题逻辑

1.命题:判断结果唯一陈述句
(1)真命题:判断结果为的命题
(2)假命题:判断结果为的命题
(3)悖论:自相矛盾的语句 例如:我正在说的这句话是谎言

考点:判断是否是命题
注意:(1)首先看是否是陈述句,祈使句,反问句,感叹句…都不是命题
(2)看真值是否唯一,真值是否唯一和人们是否知道它是真值是两回事
例:x>1不是命题 明天是晴天是命题

2.(1)简单命题(原子命题):句子不能再分解了
(2)命题符号化:将命题用符号表示,p,q,r等
(3)命题常项(命题常元):真值确定的陈述句
(4)命题变项(命题变元):真值可以变化的陈述句 例:x>2 x赋值不同结果不同,其不是命题
(5)复合命题:简单命题用联结词联结而成的命题

3.联结词
(1)¬:否定联结词 翻译:不是,非
(2)∧:合取联结词 翻译:既…又…,不仅…而且…,虽然…但是…
(3)∨:析取联结词 翻译:或
1)相容性或
2)排斥或:
例:小王在宿舍或图书馆 pVq 排斥或但两者不能同时发生
选小王和小明一个当班长(¬p∧q)∨(p∧¬q)
蕴含联结词:以下都是p->q
在这里插入图片描述

(5)<–>:等价联结词:翻译:当且仅当
在这里插入图片描述
4.(1)命题公式(合式公式):由有限个命题和联结词组成的正确表示 例pVq正确 pq不正确
(2)n层命题公式:

在这里插入图片描述
在这里插入图片描述
5.赋值(解释):给命题公式的命题变项赋值,结果成真为成真赋值,否则为成假赋值 例pVq 11为真 00为假
赋值个数:n个命题变项共有2^n个赋值

6.(1)重言式(永真式):任何赋值结果都为真
(2)矛盾式(永假式):任何赋值结果都为假
(3)可满足式:至少存在一组成真赋值
真值表:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
7.(1)n元真值函数:一个n(n≥1)阶笛卡儿积{0,1}”到{0,1}的函数称为一个n元真值函数F记为F: {0,1}"→{0,1 }
(2)n个命题变项有 2 n 2^n 2n个赋值,有2^ 2 n 2^n 2n个真值函数
例p q有四种赋值,可以写出16种结果不同的真值函数
在这里插入图片描述

8.命题A和命题B等值:等价式A↔B是重言式,即两者赋值结果都相同,A<=>B
判断是否等值:(1)用真值表对比判断
(2)等值演算

9.重要等值式
在这里插入图片描述
在这里插入图片描述

用途:用以上结论解题
(1)验证等值式是否相等
在这里插入图片描述

(2)判断公式的类型
在这里插入图片描述
10.(1)析取范式:仅由有限个简单合取式构成的析取式
(2)合取范式:仅由有限个简单析取式构成的合取式
(3)范式存在定理:任一命题公式都存在与之等值的析取范式和合取范式.且不唯一

11.(1)极小项:在简单合取式中每个命题变项与其否定只出现一次,n个命题变项产生2^n极小项
(2)极大项:在简单析取式中每个命题变项与其否定只出现一次,n个命题变项产生2^n极大项
在这里插入图片描述
在这里插入图片描述
12.(1)主析取范式:公式A的析取范式中的简单合取式全是极小项且唯一
(2)主合取范式:公式A的合取范式中的简单析取式全是极大项且唯一

(3)求主析取范式:
1)等值演算 化成主析取范式
2)真值表 找成真赋值
在这里插入图片描述
(4)主析取范式用途:
(1)判断两命题公式是否等值
(2)判断命题公式的类型
(3)求命题成真赋值和成假赋值

13.全功能集:设S是一个联结词集合,如果任一真值函数都可以用仅含S中的联结词的命题公式表示
基本全功能集:{¬,∧,∨}、{¬,∧}、{¬,∨}、{¬,→}、

14.(1)p↑q:与非式 等价于¬(p∧q) 称作"p与q的否定"
(2)p↓q:或非式:等价于¬(p∨q) 称作"p或q的否定"
(3){↑},{↓}是全功能集
在这里插入图片描述
14.组合电路:由电子元件物理实现逻辑运算,形成命题公式
在这里插入图片描述
15.若(A1,A2…Ak)→B为重言式,则称A1,A2 ,…,Ak推出结论B的推理正确,B是A1 ,A2 ,…,Ak的逻辑结论或有效结论.称(A1,A2…Ak)→B为由前提A1,A2,…,Ak推出结论B的推理的形式结构.
例:如果天气凉快,小王就不去游泳.天气凉快.所以小王没去游泳.
在这里插入图片描述
16.(1)推理定律
在这里插入图片描述
在这里插入图片描述

(2)推理解题方法:
1)直接求:通过已知前提,判断结论是否成立
2)附加前提:若结论为蕴含式,其箭头左边可作为前提,判断箭头右边是否成立
3)归谬法:假设结论为假,作为前提,判断结果是否矛盾

其他:当为重言式时,主析取范式和主合取范式结果都为1

第一章常见题型
1.判断是否是命题,简单命题,复合命题,真假命题
2.判断命题是否是重言式或矛盾式:真值表法,等值演算
3.化主合取范式和主析取范式
4.推理,已知前提,求结论:推理公式
5.全功能集转换
6.知命题变量真值,求构成的命题真值

第二章 一阶逻辑

1.一阶逻辑(谓词逻辑);
个体词:单独存在的个体,可具体,可抽象.如人,画,思想…
谓词:表示性质或两者之间的关系如…是程序员 A比B高
个体常项:表示具体的或特定的个体的词
个体变项:泛指的个体的词称
个体域:个体变项的取值范围,可有限,也可无限 如自然数集
全总个体域:个体域由宇宙间的一切事物组成
谓词常项:具体性质或关系的谓词
谓词变项:抽象的或泛指的谓词
x具有性质F :记为F(x)
x,y具有关系L:记为L(x,y)
元数:谓词中包含的个体词数称为.
含n(n≥1)个个体词的谓词称为n元谓词.一元谓词是表示个体词性质的.
当n≥2时,n元谓词表示个体词之间的关系
0元谓词:不带个体变项的谓词,就是将个体谓词变项变成个体谓词常项
在这里插入图片描述
2.全称量词:
在这里插入图片描述
存在量词:
在这里插入图片描述
例:在这里插入图片描述
在这里插入图片描述
注意:(1)在不同个体域表达式不一样,如果没有给出个体域,应看成全体个体域,
(2)多个量词出现时,不能随意调换顺序
在这里插入图片描述
3.一阶逻辑符号化字母表
在这里插入图片描述
4.项:
在这里插入图片描述

5.原子公式:设R(x1,x2,…xn)是任意的n元谓词,t1,t2,…, tn是项,则称R(t1,t2,…,tn).
合式公式(谓词公式):简称公式
在这里插入图片描述
6.指导变项:合式公式∀xA和∃xA中的x
辖域:合式公式∀xA和∃xA中的A
约束出现:辖域中x的所有出现(x受相应量词指导变项的约束)
自由出现:A中不是约束出现的其他变项的出现
例:在这里插入图片描述

在这里插入图片描述
封闭的合式公式(闭式):若公式A中无自由出现的个体变项
7.换名规则:将一个指导变项及其在辖域中所有约束出现替换成公式中没有出现的个体变项符号.
在这里插入图片描述

8.解释I:通俗的说就是将不确定的项(元素,函数,谓词)都赋值
在这里插入图片描述
例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
解题技巧:把所有条件带进去即可

赋值:给定解释I,给公式中每个自由出现的个体变项指定个体域中的一个元素

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
9.逻辑有效式(永真式):设A为一谓词公式,如果A在任何解释和该解释下的任何赋值下都为真
矛盾式(永假式):,如果A在任何解释和该解释下的任何赋值下都为假
可满足式:若至少存在一个解释和该解释下的一个赋值使A为真

10.代换实例:设A0是含命题变项 p1,p2 , …,pn的命题公式,A1,A2,…,An是n个谓词公式,用Ai处处代换pi(1≤i≤n),所得公式A称为A0的代换实例
F(x)→G(x),VxF(x)→G(x)等都是p→q的代换实例

命题公式中的重言式的代换实例都是永真式,命题公式中的矛盾式的代换实例都是矛盾式

11.等值式:设A、B是一阶逻辑中的两公式,若A→B为逻辑有效式,记为A<=>B
重要定理:
在这里插入图片描述
在这里插入图片描述
注:A(x)是含自由出现的任意的公式,而B中不含有x的自由出现
在这里插入图片描述

在这里插入图片描述

例:在这里插入图片描述

注:换元的目的是获得前束式,如果能直接前移就不需要换元,否则需要

12.结尾:
苏格拉底三段论“凡是人都要死的.苏格拉底是人.所以苏格拉底是要死的

在这里插入图片描述

第三章 集合的基本概念和运算

1.集合:一些可确定的、可分辩的事物构成的整体
元素,集合中的特定的事物
N代表自然数集合(包括0),Z代表整数集合,Q代表有理数集合,R代表实数集合,C代表复数集合

2.子集合(子集):设A、B为集合,如果B中的每个元素都是A中的元素,则B是A的子集,称B被A包含,或A包含B 记 B⊆A
包含的符号化 B⊆A⇔∀x(x∈B→y∈A)
相等:设A、B为集合,如果A⊆B且B⊆A,则称A 与B相等,记作A=B.
记为A=B⇔A⊆B∩B⊆A
真子集:设A、B为集合,如果 BCA且B≠A,则称B是A的真子集,记作 B⊂A.不是真子集则为非子集或相等
空集:不含任何元素的集合,记作∅.
空符号化表示为∅={x|x≠x } .
空集是一切集合的子集,且空集是唯一的
∅:无元素
{∅}:含空集元素
在这里插入图片描述
3.n元集:含那个元素的集合
m元子集:n元集含m个(m<=n)元素的子集
n元集个数 C n 0 + C n 1 + . . . + C n n = 2 n C_n^0+C_n^1+...+C_n^n=2^n Cn0+Cn1+...+Cnn=2n
幂集:集合A的全体子集构成的集合,记为P(A)
符号化:P(A)={x|x⊆A}
P(A)={∅,{a},{b},{c},{a,b} ,{a,c },{b,c},{a,b,c}}.

例:
在这里插入图片描述
注:求幂集时一定要有2^n个
全集:在一个具体问题中,涉及的集合都是某个集合的子集,记为E(或U)

4.五种集合运算符:并(∪)交(∩)相对补(-)绝对补(~)对称差(⊕)
并集:A∪B={x|x∈A∨x∈B}
交集:A∩B={x|x∈A∧x∈B}
相对补集:A-B={x|x∈A∧x∉B}
不交:两集合的交集为空集
n个集合的交集
在这里插入图片描述
绝对补集:设E为全集,A⊆E,则称A对E的相对补集为A的绝对补集,记作~A=E-A={x|x∈E∧x∉A}={x∉A}
对称差:去掉集合A和B所共有的 记为A⊕B=A⊕B=(A-B)∪(B-A)=(A∪B)-(A∩B)
文氏图:
在这里插入图片描述
5.集合算律:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
例:
在这里插入图片描述

在这里插入图片描述
6.基数:集合A={1,2,…,n},含有n个元素,这个集合的基数是n,记为card A = n 表示集合中所含元素多少的量,也可记为|A|=n
|∅|=0
有穷集:设A为集合,若存在自然数n(0也是自然数),使得|A|=card A=n
反之无穷集
{a ,b,c}是有穷集,而N、Z、Q、R都是无穷集.

7.包含排斥原理:
在这里插入图片描述
在这里插入图片描述
例:
在这里插入图片描述

第五章 图的基本概念

1.无序积: 设A、B为两集合,称{{a ,b} | a ∈A∧b∈B}为A与B的无序积,记作A&B.,将无序对{a ,b}记作(a ,b)
2.
(1)无向图:
一个无向图G是一个二元组〈V,E〉,其中
1)V是一个非空的有穷集合,称为.G的顶点集,V中元素称为顶点或结点;
2)E是无序积V&V的一个多重子集,称为G的边集,E中元素称为无向边或简称边.
图G的顶点集记作V(G),边集记作E(G)

(2)空图:规定顶点集为的∅图为空图

(3)有向图:
一个有向图D是一个二元组〈V,E〉,其中
1)V是一个非空的有穷集合,称为D的顶点集,V中元素称为顶点或结点;
2)E是卡氏积VXV的多重子图,称为D的边集,其元素称为有向边,也简称边.
在这里插入图片描述
注:常用G表示无向图边集合用{(a,b)},D表示有向图,边集合用{<a,b>}
(4)n阶图:n个顶点的图
(5)零图:没有一条边的图
(6)平凡图(一阶零图):只有一个顶点,没有边的图

3.无向图和有向图相关描述
(1)在无向图G=<V,E>中,设e=(u,v)是的一条边,则称u,v为e的端点,e与u(和v)关联.无边关联的顶点称为孤立点.若一条边所关联的两个顶点重合,则称此边为环.若u≠v,则称e与u(和v)的关联次数为1;若u=v,称e与u的关联次数为2;若w不是e的端点,则称e与w的关联次数为0.
若存在一条边e以顶点u ,v为端点,则称u,v是相邻的.若两条边e ,e’至少有一个公共端点,则称e ,e’是相邻的.

(2)在有向图D=<V,E>中,设e=(u,v)是的一条有向边,则称u为e的始点,v为e的终点,也称u,v为e的端点,e与u(和v)关联.无边关联的顶点称为孤立点.若一条有向边的始点与终点重合,则称此边为环.

4(1)度数:简称度,顶点v作为边的端点的次数之和,记为d(v)
(2)出度:一个顶点作为n条边的始点,则这个点出度为n,记为 d + ( v ) d^+(v) d+(v)
(3)入度:一个顶点作为n条边的终点,则这个点入度为n记为 d − ( v ) d^-(v) d(v)
d ( v ) = d + ( v ) + d − ( v ) d(v)=d^+(v)+d^-(v) d(v)=d+(v)+d(v)
(5)最小度:△(G)= max{d(v)| v ∈V }
(6))最大度:δ(G)=min{d(v)|v∈V}
在这里插入图片描述
4.(1)握手定理:设图G=(V,E)为无向图或有向图,V={v1 , v2 ,…, vn },边数|E|=m,无向图则度数等于边数的两倍
在这里插入图片描述

(2)有向图则各顶点出度之和等于入度之和等于边数
在这里插入图片描述
(3)推论:任何图(无向的或有向图)中,度数为奇数的顶点个数是偶数.
(4)度数序列:设V={v1 ,v2 ,…,vn,}为图G的顶点集,称(d(v1),d(v2), …, d(vn))为G的度数序列.

7.(1)平行边:
1)无向图:关联一对顶点的无向边多于1条
2)有向图:如果有多于1条的边的始点与终点相同,则称这些边为有向平行边
(2)重数:平行边的条数
(3)多重图:含平行边的图
(4)简单图:不含平行边也不含环的图
(5)n阶无向完全图:各顶点之间都有边相连 记为 K n K_n Kn
(6)n阶有向完全图:各顶点之间都有两条方向相反的边
(7)子图/母图:图A的顶点和边都含于图B顶点和边,则A是B的子图,B是A的母图,记为A含于B
真子图:图A含于图B但不等于图B
(8)生成子图:A与B的顶点相等,A边含于B,边可缺少
(9)导出子图:
1)边导出子图:图A的边含于图B,A边不为空,记为G[E]
2)顶点导出子图:图A的顶点含于图B,A顶点不为空G[V]
注:每个图都是自己的子图
(10)补图:设A为n阶无向简单图,A的无向完全图去除A的边,为其补图,记为 A − A^- A
(11)同构:点和边都能一一映射,并且重数相同 G1≌G2
(11)皮德森图:在这里插入图片描述
8.(1)通路:能从一个点v0走到另一个点vl的路,v0为起点,vl为终点,所走的边数为其长度
回路:v0=vl
在这里插入图片描述
(2)简单通路:其所有边互不相同(欧拉)
(3)简单回路:v0=vl且边只能走一次,顶点不限
(4)初级通路:每个顶点和边都只能走一次
(5)初级回路(圈):v0=vl且每个顶点和边都只能走一次
(6)复杂通路:顶点和边都可以走多次
(7)复杂回路:v0=vl且顶点和边都可以走多次
通路>复杂通路>简单通路>初级通路

9.定理:
(1)在一个n阶图中,若从顶点u到v(u≠v)存在通路,则从u到v存在长度小于等于n-1的(初级)通路.
(2)在一个n阶图中,如果存在v到自身的回路,则存在v到自身长度小于等于n的(初级)回路.

10.(1)连通:无向图中,顶点u到v存在通路,则称u与v是连通的,任何顶点与自身都是连通的
(2)可达:有向图中,顶点u到v存在通路,则称u可达v
(3)连通分支:一个图中每个连通图,记为G[V1],G[V2],…,G[Vk],连通分支个数p(G)
例:下图知,p(G)=3
在这里插入图片描述

(4)连通图:若无向图G是平凡图或G中任意两顶点都是连通的,否则非连通图
(5)弱连通图:有向图D,略去方向后所得无向图是连通图
(6)单向连通图:任意两个顶点至少有一个可达另一个
(7)强连通图:任何一个顶点相互可达
在这里插入图片描述
注:无向图分为连通图和非连通图
有向图分为弱连通图<单向连通图<强连通图

11.(1)删除V’:删除图中的顶点集V’及其关联边
删除E’:删除图中的边集E’及其关联顶点
(2)点割集:一个顶点集,图G去掉这个顶点集的顶点后,连通分支个数>原图的连通分支个数,且图G去掉这个顶点集的所有真子集的顶点后,其连通分支个数=原图的连通分支个数,称为点割集
割点:点割集只有一个点
(3)边割集:一个边集,图G去掉这个边集的边后,连通分支个数>原图的连通分支个数,且图G去掉这个顶点的所有真子集的边后,其连通分支个数=原图的连通分支个数,称为边割集
割边(桥):边割集只有一个边

12.(1)无向图关联矩阵:
行作为顶点
列作为边
矩阵元素aij:顶点与边的关联次数
在这里插入图片描述
在这里插入图片描述
性质:(1)列之和都为2,因为每条边都只有两个端点
(2)行之和是该顶点的度数
(3)所有元素之和是总度数
(4)孤立点没有关联边,所以行元素都是0
(5)平行边则有两列元素相同
在这里插入图片描述
(2)有向图关联矩阵
行作为顶点
列作为边
矩阵元素aij:1:始点 0未关联 -1终点
在这里插入图片描述
在这里插入图片描述
性质:
1)每一列都只有一个1和一个-1,因为边只有一个始点和一个终点
2)每行1的个数代表该点出度个数,-1的个数代表该点入度个数
3)矩阵所有元素1的个数代表总出度=m,-1个数代表总入度=m
在这里插入图片描述
(3)有向图的邻接矩阵
行列为顶点
元素pij为一个顶点邻接到另一个顶点的边数
在这里插入图片描述
在这里插入图片描述
性质:
1)行元素之和代表该顶点出度数
2)列元素之和代表该顶点入度数
3)总元素之和代表边数m
在这里插入图片描述
A l A^l Al:vi到vj边数为l的通路数
推论:在这里插入图片描述
(4)有向图的可达矩阵
行列为顶点
元素pij为是否可达 1可达 0不可达
在这里插入图片描述

在这里插入图片描述
通过邻接矩阵求可达矩阵
在这里插入图片描述

13.(1)带权图:给图每条边附加一个实数,G连同附加在边上的实数称为带权图,记为G=<V,E,W>
权:W={w(e)|e∈E},w(e)是附加在e上的实数,称作边e的权

(2)最短路径:设u、v为G中的两个顶点,从u到v的所有通路中权最小的通路称为u到v的最短路径,u到v的最短路径的权称作u到v的距离,记作d(u, v).
(3)最短路径问题:任给一个简单带权图G=<V,E,W>及u ,v∈V,求u,v之间的最短路径及距离.
解:dijkstra
1)设(d,v) d为出发点到当前点的总距离,v为上一个经过的顶点
2)确定出发点,该顶点初始值设为(0,λ),其他点为(+∞,λ)
3)每行确定一个最短距离的顶点作为确定点,下一行计算每一个顶点与确定点的距离,与上一行点到初始点的距离取最短距离作为当前值

例:在这里插入图片描述
在这里插入图片描述

14.(1)项目网络图:一个项目可以用带权的有向图描述
满足条件:
1)有一个始点和一个终点.始点的入度为0,表示项目开始;终点的出度为0,表示项目结束.
2)任意两点之间只能有一条边
3)无回路
4)没一条边的始点编号小于终点编号

(2)关键路径:项目网路图中从始点到终点的最长路径
(3)关键活动:关键路径上的活动

例:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
15.着色问题
(1)设无向图G无环,对G的每个顶点涂一种颜色,使相邻的顶点涂不同的颜色,称为图G的一种点着色,简称着色.若能用k种颜色给G的顶点着色,则称G是k-可着色的.
(2)图的着色问题就是要用尽可能少的颜色给图着色

例:在这里插入图片描述
在这里插入图片描述

第六章 特殊的图

1.(1)二部图(偶图):若能将无向图G=<V,E>的顶点集V划分成两个不相交的非空子集V1和V2,使得G中任何一条边的两个端点一个属于V1,另一个属于V2 ,则称G为二部图,V1,V2称为互补顶点子集,此时可将G记成G=<V1,V2,E>.

在这里插入图片描述
(2)完全二部图:若V1中每一个顶点与V2中每一个顶点均有且仅有一条边相关联,则称二部图G为完全二部图(或完全偶图).当|V1|=n,|V2l=m时,完全二部图G记为Kn,m.

(3)二部图的判定:一个无向图是二部图当且仅当G中没有长度为奇数的回路

2.(1)匹配:设G=<V,E>为无向图,M含于E,若M中任意两条边均不相邻,则称M为G中的匹配
在这里插入图片描述

(2)极大匹配:在M中再加人任何1条边就都不是匹配.
(3)最大匹配: 边数最多的匹配称为最大 匹配
(4)匹配数:最大匹配中边的条数.记为βG),简记为β1.
(5)饱和点:设M为G中一个匹配,v∈V(G),若存在M中的边与v关联,则称v为M饱和点,否则v为M非饱和点.
(6)完美匹配:若G中每个顶点都是M饱和点,称M为完美匹配.如下图:
在这里插入图片描述

(7)完备匹配:设G=〈V1,V2,E〉为一个二部图,|V1|≤|V2l ,M为G中一个最大匹配,若|M|=|V1l,则称M为G中V1,到V2的完备匹配.
当|V1|=lV2|时,完备匹配是完美匹配.

(8)判断完备匹配:
1)Hall定理:设二部图G=<V,V2 ,E>,|V1|≤|V2l,G中存在从V1到V2的完备匹配当且仅当V1中任意k个顶点至少邻接V2中的k个顶点.(充分必要条件)
2)t定理:设二部图G=<V1,V2,E>,如果存在t>0使得:
V1中每个顶点至少关联t条边;
V2中每个顶点至多关联t条边.
则G中存在V1到V2的完备匹配.(充分条件)
在这里插入图片描述
3.(1)欧拉回路(欧拉通路):经过图(无向图或有向图)中每条边一次且仅一次并且行遍图中每个顶点的回路(通路)
(2)欧拉图:欧拉回路的图

(3)欧拉通路和欧拉回路判定
首要条件:图是连通图
1)欧拉回路判定:
无向图:所有顶点度数都是偶数
有向图:每个顶点的出度等于入度
2)欧拉通路判定:
无向图:有且只有两个顶点度数为奇数,这两个顶点为始点和终点,其他顶点度都是偶数
有向图:除两端点外,其他顶点入度等于出度,一个端点入度数比出度大1作为终点,另一个端点入度数比出度小1作为起点.
例:在这里插入图片描述
解:(a)度数都是3奇数不是欧拉通路
(b)度数两个数3奇数,两个数2偶数,是欧拉通路,不是欧拉回路
©度数都是偶数,是欧拉回路
(d)出度不等于入度不是欧拉通路
(e)是欧拉通路
(f)各个顶点出路等于入度是欧拉回路

4.(1)哈密顿回路(哈密顿通路):经过图中每个顶点一次且仅一次的回路(通路)
(2)哈密顿图:存在哈密顿回路的图
(3)哈密顿图判定:
1)必要条件:设无向图G=<V,E>是哈密顿图,V1是V的任意的非空子集,则p(G-V1)≤|V1l
推论:设无向图G=<V,E>中有哈密顿通路,V1是V的任意的非空子集,则p(G-V1)≤|V1l+1.
使用其逆否命题来判断该图不是哈密顿图
例:
在这里插入图片描述
解:V1={a,b,c,d,e,f,g},p(G-V1)=9>|V1|+1=8不存在哈密顿通路

(2)充分条件:
设G是n(n3)阶无向简单图,如果G中任何一对不相邻的顶点的度数之和都大于等于n—1,则G中存在哈密顿通路.
如果G中任何一对不相邻的顶点的度数之和都大于等于n,则G是哈密顿图.

在n(n≥2)阶有向图D中, 如果所有有向边均用无向边代替, 所得无向图中含生成子图Kn, 则有向图D中存在哈密顿通路。
推论:n(n≥3)阶有向完全图为哈密顿图

5.竞赛图: 任意两个顶点之间恰好有一条有向边.竞赛图一定有哈密顿通路

6:(1)格雷码:把所有n位0-1串排成一个序列,相邻的两个以及最后一个和第一个之间只有一位不同,这样的序列称作格雷码.当n=3时,000,100,101,111,110,010,011,001是一个格雷码
(2)寻找格雷码:构造一个n维立方体图,它有2”个顶点,每个顶点表示一个n位串,两个顶点之间有一条边当且仅当它们的n位串仅相差一位.
在这里插入图片描述

7.(1)平面图:如果能将图G除顶点外边不相交地画在平面上,则称G是平面图
这个画出的无边相交的图称作G的平面嵌入. 没有平面嵌入的图称作非平面图
(2)设G是一个平面嵌入
1)G的面: 由G的边将平面划分成的每一个区域
2)无限面(外部面): 面积无限的面, 用R0表示
3)有限面(内部面): 面积有限的面, 用R1, R2,…, Rk表示
4)面Ri的边界: 包围Ri的所有边构成的回路
5)面Ri的次数: Ri边界的长度,用deg(Ri)表示

(3)平面图的性质:平面图各面的次数之和等于边数的2倍。

8.(1)极大平面图:若G是简单平面图, 并且在任意两个不相邻的顶点之间加一条新边所得图为非平面图,则称G为极大平面图
(2)极小非平面图:若G是非平面图, 并且任意删除一条边所得图都是平面图, 则称G为极小非平面图
(3)极大平面图性质:
1)极大平面图必连通.
2)阶数大于等于3的极大平面图中不可能有割点和桥.
3)任何n(n>=4)阶极大平面图G均有最大度δ(G)>=3.

(4)极大平面图判断
n(n>=3)阶简单平面图是极大平面图当且仅当它连通且每个面的次数都为3.

9.(1)欧拉公式:
1)设G为n阶m条边r个面的连通平面图, 则:n-m+r=2.
2)设G是有 p (p>=2) 个连通分支的平面图, 则n - m + r = p + 1
3)设G是有 p (p>=2) 个连通分支的平面图, 每个面的次数至少是l(l>=3),则
m < = l l − 2 ( n − p − 1 ) m<={l\over{l-2}}(n-p-1) m<=l2l(np1)
证明:平面图各面的次数之和等于边数的2倍
所以2m>=lr
欧拉公式:
2m>=l(2-n+m)

(2)推论: K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3都不是平面图

10.(1)同胚:(a)消去2度顶点w,(b)插入2度顶点w,如果G1和G2同构
经过反复(a)(b)操作后同构,则称G1与G2同胚,例( c)(d)同胚
在这里插入图片描述
在这里插入图片描述
(2)收缩:删除边(u ,v),用新的顶点w(可以用u或v充当w)取代u,v,并使w和除(u , v)外所有与u、v关联的边关联,称这个变换为收缩边(u, v).
如果G可以通过若干次收缩边得到G,则称G可收缩到G2.
在这里插入图片描述

(3)库拉图斯基定理
1)一个图是平面图当且仅当它不含与K5同胚的子图,也不含与K3,3同胚的子图.
2)一个图是平面图当且仅当它没有可收缩到K5的子图也没有可收缩到K3,3的子图.

11.四色定理:任何平面图都是4-可着色的

第七章 树

1.无向树(树):不含回路的连通无向图
森林:每个连通分支均是树的非连通无向图
平凡树:平凡图
树叶:树中度数为1的顶点
分支点:树中度数大于等于2的顶点

2.树的相关性质
设G=<V,E>,|V|=n,|E|=m,则下面各命题是等价的:
(1)G连通且不含回路;
(2)G的每对顶点之间有唯一的一条路径;
(3)G是连通的且m=n-1;
(4)G中无回路且m=n-1;
(5)G中无回路,但在任两个不相邻的顶点之间增加一条边,就形成唯一的一条初级可路;
(6)G是连通的且每条边都是桥.

3.树的相关定理
n阶非平凡的树中至少有2片树叶
证明:非平凡树,每个顶点度数都大于等于1,设有k片树叶,m=n-1
根据握手定理
2m>=k*1+(n-k)*2
k>=2

4.(1)生成树:设G=<V,E>是无向连通图,T是G的生成子图并且是树,则称T是G的生成树
G在T中的边称为T的树枝,不在T中的边称为T的弦.
T的所有弦的集合的导出子图称为T的余树
(2)设n阶连通无向图有m条边,则它的生成树有n一1条边,余树有m-n十1条边.
(3)注:余树不一定是树,也不一定连通

5.生成树的性质
(1)任何无向连通图都有生成树
(2)推论:设n阶无向连通图G有m条边,则m>=n-1.

6.基本回路:设T是连通图G=<V,E>的一棵生成树,对每一条弦e,存在唯一的由弦e和T的树枝构成的初级回路Ce, 称Ce为对应于弦e的基本回路.
基本回路系统:所有基本回路的集合为对应生成树T的基本回路系统
基本回路的个数都等于m-n+1

7.(1)设T是无向连通带权图G=<V,E,W>的生成树,T中所有边的权之和称为T的权,记作W(T).
(2)最小生成树: 带权图权最小的生成树
(3)最小生成树问题是求任给的无向连通带权图的最小生成树:
解:避圈法 (Kruskal 库斯克算法) —求最小生成树的算法
1)将每条边按权值大小从小到大排列
2)按从小到大依次选取,若形成环则舍去当前选择的边,直到选n-1条边

8.有向树: 基图为无向树的有向图
根树: 有一个顶点入度为0, 其余的入度均为1的
非平凡的有向树
树根: 有向树中入度为0的顶点
树叶: 有向树中入度为1, 出度为0的顶点
内点: 有向树中入度为1, 出度大于0的顶点
分支点: 树根与内点的总称
顶点v的层数: 从树根到v的通路长度
树高: 有向树中顶点的最大层数

9.家族树:
(1) 若顶点 a 邻接到顶点 b, 则称 b 是 a 的儿子, a是b 的父亲;
(2) 若b和c为同一个顶点的儿子, 则称b和c是兄弟;
(3) 若a≠b且a可达b, 则称a是b的祖先, b是a的后代.

10.根子树:设v为根树的一个顶点且不是树根, 称v及其所有后代的导出子图为以v为根的根子树.

11.有序树: 将根树同层上的顶点规定次序
r叉树:根树的每个分支点至多有r个儿子
r叉正则树: 根树的每个分支点恰有r个儿子
r叉完全正则树: 树叶层数相同的r叉正则树
r叉有序树: 有序的r叉树
r叉正则有序树: 有序的r叉正则树
r叉完全正则有序树: 有序的r叉完全正则树

12.设2叉树T有t片树叶v1, v2, …, vt, 树叶的权分别为w1, w2, …, wt, 称为T的权, 其中
l(vi)是vi的层数. 在所有权为w1, w2, …, wt 的t片树叶的2叉树中, 权最小的2叉树称为最优2叉树.

在这里插入图片描述
求最优2叉树的算法
Huffman算法:
给定实数w1, w2, …, wt ,
① 作t片树叶, 分别以w1, w2, …, wt为权.
② 在所有入度为0的顶点(不一定是树叶)中选出两个权最小的顶点, 添加一个新分支点, 以这2个顶点为儿子, 其权等于这2个儿子的权之和.
③ 重复②, 直到只有1个入度为0 的顶点为止.
W(T)等于所有分支点的权之和
在这里插入图片描述
13.设a =α1α2…αn-1αn是长度为n的符号串
α的前缀: α1α2…αk , k=1,2,…,n-1,n
前缀码: {β1, β2, …, βm}, 其中β1, β2, …, βm为非空字符串, 且任何两个互不为前缀
2元前缀码: 只有两个符号(如0与1)的前缀码xβα
{0,10,110, 1111}, {10,01,001,110}是2元前缀码 {0,10,010, 1010} 不是前缀码

一棵2叉树产生一个二元前缀码:
对每个分支点, 若关联2条边, 则给左边标0, 右边标1;若只关联1条边, 则可以给它标0(看作左边), 也可以标1(看作右边). 将从树根到每一片树叶的通路上标的数字组成的字符串记在树叶处, 所得的字符串构成一个前缀码.
在这里插入图片描述
最佳2元前缀码:设要传输的电文中含有t个字符, 字符ai出现的频率为pi , 它的编码的长度为li , 那么n个字符的电文的编码的期望长度是在这里插入图片描述
称编码期望长度最小的2元前缀码为最佳2元前缀码.
例:在这里插入图片描述
在这里插入图片描述

  • 19
    点赞
  • 116
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Baal Austin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值