李宏毅《机器学习》任务六

Task06开始啦:
Task06:参照开源文档,观看视频 P21:卷积神经网络(3天) 截止时间 07月25日03:00
开源文档:https://datawhalechina.github.io/leeml-notes
视频地址:https://www.bilibili.com/video/BV1Ht411g7Ef

  1. Why CNN for Image?

  2. The whole CNN

  3. CNN各个部分的原理——卷积层convolution

  4. CNN各个部分的原理—最大池化层Max Pooling

  5. CNN各个部分的原理—Flatten层

  6. CNN in Keras

  7. What does CNN learn?

1. Why CNN for Image?

卷积神经网络(Convolutional Neural Network)是全连接神经网络(FCNN)的简化版,通常用在图像识别上。通常把图像当作矩阵来看,机器通过CNN识别出图像是什么。直接用FCNN识别效率不高,CNN效率要好很多。
以识别鸟嘴图像为例。
在这里插入图片描述
例如有两张鸟的图片,要让机器识别出是鸟,典型特征是鸟嘴。鸟嘴只是图像中的一部分,在不同的图片中可能位于不同的位置。但是鸟嘴的特征是一样的,可以用同一组参数的同一个神经元检测出来。这里只需要给出检测鸟嘴的神经元即可。

2. The whole CNN

在这里插入图片描述
3. CNN各个部分的原理——卷积层convolution
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. CNN各个部分的原理—最大池化层Max Pooling

在这里插入图片描述

5. CNN各个部分的原理—Flatten层在这里插入图片描述

在这里插入图片描述

讲真,我总结的不如网上有才的同学总结得好,直接附上我认为比较好的笔记链接吧
李宏毅《机器学习》-卷积神经网络笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值