Task06开始啦:
Task06:参照开源文档,观看视频 P21:卷积神经网络(3天) 截止时间 07月25日03:00
开源文档:https://datawhalechina.github.io/leeml-notes
视频地址:https://www.bilibili.com/video/BV1Ht411g7Ef
-
Why CNN for Image?
-
The whole CNN
-
CNN各个部分的原理——卷积层convolution
-
CNN各个部分的原理—最大池化层Max Pooling
-
CNN各个部分的原理—Flatten层
-
CNN in Keras
-
What does CNN learn?
1. Why CNN for Image?
卷积神经网络(Convolutional Neural Network)是全连接神经网络(FCNN)的简化版,通常用在图像识别上。通常把图像当作矩阵来看,机器通过CNN识别出图像是什么。直接用FCNN识别效率不高,CNN效率要好很多。
以识别鸟嘴图像为例。
例如有两张鸟的图片,要让机器识别出是鸟,典型特征是鸟嘴。鸟嘴只是图像中的一部分,在不同的图片中可能位于不同的位置。但是鸟嘴的特征是一样的,可以用同一组参数的同一个神经元检测出来。这里只需要给出检测鸟嘴的神经元即可。
2. The whole CNN
3. CNN各个部分的原理——卷积层convolution
4. CNN各个部分的原理—最大池化层Max Pooling
5. CNN各个部分的原理—Flatten层
讲真,我总结的不如网上有才的同学总结得好,直接附上我认为比较好的笔记链接吧
李宏毅《机器学习》-卷积神经网络笔记