RTX3070深度学习环境配置

话不多说,我们开始了

ps:(深度学习环境配置真的很闹心)

cuda和cudnn版本

首先附上两张图,第一张图是控制面板的cuda版本,第二张图是命令的cuda版本。(两者会存在不一样的情况,可能你装过其他的cuda版本,一搬命令行为准。)
这是控制面板cuda版本
这是命令行的cuda版本

当然万恶的NVIDIA有时候会有千奇百怪的错误。比如:nvcc不是什么内部或者外部指令什么的。这个一般情况下是在"我的电脑"里的系统环境变量少或出错原因。(这里推荐在装cuda时采用精简的装法,可以省去很多步骤)这里自行查找环境是否有少或者错误的。
这是nvcc错误
说完了cuda,接着附上cudnn的下载链接,关于cudnn11的下载需要账户,这里方便大家下载。cudnn的和cuda的配置不用多说了,就是把cudnn里的文件一一复制到cuda对应的文件夹中。
链接:https://pan.baidu.com/s/16C0dcpVPC5Lub8m8Bet16A
提取码:0115

tensorflow-gpu和keras

首先附上一下我的环境配置。这里下载tensorflow-gpu=2.4.1要找镜像比较快,不然会显示timeout。
关于yaml的文件在这里:链接:https://pan.baidu.com/s/1Xd94wd1V_BIpBj4jgKx0tw
提取码:0115
环境配置

测试tensorflow-gpu是否安装成功

import tensorflow as tf
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  
print('GPU', tf.test.is_gpu_available())
a = tf.constant(2.0)
b = tf.constant(4.0)
print(a + b)
#如果成功会显示如下:
>>>GPU True
>>>tf.Tensor(6.0, shape=(), dtype=float32)

遇到的一些问题

如果上述没有成功,哈哈恭喜你要继续阅读啦~要自行根据自身的错误进行解决,本人遇到的几个问题已经解决。
问题一: Could not find ‘cusolver64_10.dll‘ ,测试tensorflow-gpu,显示GPU False。
(链接:https://pan.baidu.com/s/1uTHJYKSoigExv0NUkuThpg 提取码:0115) 将这里的下载到对应的cusolver64_10dll放入C:\Windows\System32

问题二:错误
尝试了将C:\Program Files\NVIDIA GPU ComputingToolkit\CUDA\v11.1\extras\CUPTI\lib64中的cupti64_2020.2.0.dll复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin。但是还是没有解决,有人说直接将cupti64_2020.2.0.dll改名字为cupti64_110.dll,虽然确实不报错,但是有点其他问题,训练几张图就卡住了。

问题三:tensorflow显存不足报错CUBLAS_STATUS_ALLOC_FAILED

#---------------------------------------------------#
#   防止报failed to create cublas handle: CUBLAS_STATUS_ALLOC_FAILED
#---------------------------------------------------#
config = tf.compat.v1.ConfigProto() #tensorflow 1.x采用tf.ConfigProto()
config.gpu_options.allow_growth = True 
session = tf.compat.v1.Session(config=config) #tensorflow 1.x采用tf.Session()

问题四:关于tensorflow1.x的代码在tensorflow2.x环境下的报错:
tf.log----->tf.math.log
tf.to_init32(x)------>tf.cast(x,dtype=tf.int32)

最后附上代码运行图:

在这里插入图片描述
如有大佬已经解决了我的问题二或者有其他错误,请大家在留言区分享,大家共同进步!

### RTX 4060 深度学习环境配置教程 #### 创建 Anaconda 虚拟环境并安装 Python 版本 为了确保兼容性和稳定性,在 Windows 11 上使用 RTX 4060 显卡时,建议通过 Anaconda 来管理 Python 环境。可以利用如下命令来创建名为 `pytorch` 的新虚拟环境,并指定所需的 Python 版本: ```bash conda create -n pytorch python=3.9 ``` 此操作会自动处理依赖关系并设置合适的路径[^1]。 #### 配置国内镜像源加速下载速度 考虑到网络因素可能影响软件包获取效率,推荐配置持久性的中国区镜像资源作为默认仓库地址。这一步骤能够显著提升后续组件安装过程中的响应时间与成功率。 #### 安装 Visual Studio Code 编辑器 Visual Studio Code (VSCode) 是一款广受好评的支持多种编程语言的轻量级编辑器。对于从事机器学习项目的研究人员来说,它提供了丰富的插件生态系统,特别是针对 Jupyter Notebook 和 Git 工作流的支持尤为出色。可以从官方网站下载适用于 Windows 平台的应用程序文件进行本地部署[^3]。 #### 设置 NVIDIA CUDA Toolkit 及 cuDNN 库 由于 PyTorch 支持 GPU 加速计算功能,因此需要先完成对 NVIDIA 提供的 CUDA 开发工具集及其配套神经网络推理引擎——cuDNN 的集成工作。具体版本的选择应当依据所使用的 PyTorch 发布版说明文档给出的要求为准。通常情况下,可以通过官方渠道获得最新稳定发行版本,并遵循其提供的指导手册来进行正确无误的操作流程[^2]。 #### 安装 PyTorch 框架实现 GPU 训练模型 当上述准备工作全部就绪之后,就可以着手准备引入核心框架本身了。鉴于当前硬件条件(即搭载 GeForce RTX 4060),应该优先考虑采用预编译好的二进制分发形式而非自行编译的方式。借助于 Conda 渠道可以直接调用一行简单的指令快速完成整个过程: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch-nightly ``` 这条语句不仅包含了必要的库文件还指定了特定版本号以匹配目标图形处理器架构特性。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

只读一本心术书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值