热力图画法

本文介绍了如何使用Python的pandas、seaborn和matplotlib库来读取数据、处理缺失值并绘制热力图。首先,加载数据并展示数据集的基本信息,接着计算各特征的缺失值占比,然后按缺失值比例进行排序。最后,利用value_counts()函数分析数据分布,并绘制了'generation'和'type1'的柱状图,以及相关性热力图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv(‘C:\Users\asus\Desktop\Spyder代码\pokemon.csv’)
print(df.shape)#数据集的形状
print(df.info)#数据集的具体信息
#计算各个特征缺失值所占百分比
percent_missing = df.isnull().sum() * 100 / len(df)
print(percent_missing)
“”"
代码注释:df.isnull()相关
print(df.isnull())#输出数据表形状的布尔值数据表,空的值位置由True代替,否则用False代替
print(df.isnull().values)#输出数据表形状的布尔值矩阵
print(df.values[df.isnull().values==True])#输出空值
print(df.isnull().sum())#输出数据表每个特征中对应的空值的个数
例子:https://blog.csdn.net/ningyanggege/article/details/80752299?biz_id=102&utm_term=df.isnull&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-80752299&spm=1018.2118.3001.4187
len(df) 为数据的个数801条
“”"
missing_value_df = pd.DataFrame({ #‘column_name’: df.columns,
‘percent_m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值