java图数据结构

本文详细介绍了图数据结构,包括无向图、有向图、完全图和加权图的概念,以及顶点的度、路径、环等基本元素。讨论了图的两种主要实现方式——邻接矩阵和邻接列表,分析了它们的空间复杂度,并对比了各自的优劣。此外,还提及了连通图、生成树和最小生成树等重要概念。
摘要由CSDN通过智能技术生成

概念:

G=(VE)由一组顶点V和一组边E组成,每一条边是一个元组(vw),其中v,w属于V中。如果对元组有序的,则图是有向的(directed)。否则图是无向的(undirected)。

在无向图中(undirected graph),边是没有方向的平面线。在无向图中,可以沿着边任意走一条路。任何无向图都可以表示为有向图,方法是用两条有向边替换每一条无向边。

在有向图中(directed graph),有向图是指每一条边上的顶点都是有序的图。边是从一个节点指向另一个节点的箭头。<Vi,Vj>:Vi称为尾部,Vj称为头部。在有向图中, 只能按照箭头的方向从一个节点转到另一个节点。这意味着, 在有向图中, 有可能达到死胡同, 也有可能到达一个你不能离开的节点。

完全图(complete graph)是每对顶点之间都有一条边的图。无向完全图:n个顶点和nn-1/2条边。有向完全图:n个顶点和nn-1边。如果(uv)是EG)中的边,则uv相邻,vv相邻。

加权图(weoghted graph):有时边有第三个组成部分, 重量或成本, 其语义是特定于图形的。具有与其边缘关联的值的图称为加权图。该图可以是定向的, 也可以是无方向的。权重可以表示如下内容:两个顶点之间的物理距离。从一个顶点到另一个顶点所需的时间。从顶点到顶点的行程成本是多少。

子图(Subgraph):子图设G=(V,E)是顶点集V和边集E的图。G的子图是图G'=(V',E'),其中

  1. V'是V的一个子集。
  2. E'由E中的边(v,w)组成,使得v和w都在V'中(子图中的边要预先存在,并且定点在子图中)

顶点的度(degree):顶点v的度是连接到顶点v的边数,记为TD(v)。在有向图中,顶点度是进度和出度之和:顶点v的入度是部为顶点v的边的数目,记为ID(v);顶点v的出度是尾部为顶点v的边数,记为OD(v)

路径的长度是在未加权的图形中沿着路径的边数。它是加权图中路径上弧线的成本之和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值