Week 14

A - Q老师与石头剪刀布(必做)

每一个大人曾经都是一个小孩,Q老师 也一样。
为了回忆童年,Q老师 和 Monika 玩起了石头剪刀布的游戏,游戏一共 n 轮。无所不知的 Q老师 知道每一轮 Monika 的出招,然而作为限制, Q老师 在这 n 轮游戏中必须恰好出 a 次石头,b 次布和 c 次剪刀。
如果 Q老师 赢了 Monika n/2(上取整) 次,那么 Q老师就赢得了这场游戏,否则 Q老师 就输啦!
Q老师非常想赢,他想知道能否可以赢得这场游戏,如果可以的话,Q老师希望你能告诉他一种可以赢的出招顺序,任意一种都可以。

输入

第一行一个整数 t(1 ≤ t ≤ 100)表示测试数据组数。然后接下来的 t 组数据,每一组都有三个整数:
第一行一个整数 n(1 ≤ n ≤ 100)
第二行包含三个整数 a, b, c(0 ≤ a, b, c ≤ n)。保证 a+b+c=n
第三行包含一个长度为 n 的字符串 s,字符串 s 由且仅由 ‘R’, ‘P’, ‘S’ 这三个字母组成。第 i 个字母 s[i] 表示 Monika 在第 i 轮的出招。字母 ‘R’ 表示石头,字母 ‘P’ 表示布,字母 ‘S’ 表示剪刀

输出

对于每组数据:
如果 Q老师 不能赢,则在第一行输出 “NO”(不含引号)
否则在第一行输出 “YES”(不含引号),在第二行输出 Q老师 的出招序列 t。要求 t 的长度为 n 且仅由 ‘R’, ‘P’, ‘S’ 这三个字母构成。t 中需要正好包含 a 个 ‘R’,b 个 ‘P’ 和 c 个 ‘S’
“YES”/"NO"是大小写不敏感的,但是 ‘R’, ‘P’, ‘S’ 是大小写敏感的。

样例输入

2
3
1 1 1
RPS
3
3 0 0
RPS

样例输出

YES
PSR
NO

思路

挺简单的思维题;
只计算Q老师能够赢的场次就行,不用考虑平局或者输局;
假设两个人出石头剪刀布的次数分别是a、b、c和a1、b1、c1
则Q老师赢的场次就等于 = min(a,b1)+min(b,c1)+min(c,a1);
写博客突然想到上面的小公式,哎,当时还模拟了一大堆。。。。

代码

#include <iostream>
#include <cstring>
#include <vector>

using namespace std;

int a,b,c;
int t,n;
string Monika;
string Q;
int winnum;
int needwin;

void init(){
	needwin=0;
	winnum=0;
	Monika.clear();
	Q.clear();
}

void work(){
	for(int i=0;i<Monika.size();i++){
		if(Monika[i]=='R'){//
			if(b>0){
				b--;
				winnum++;
				Q.push_back('P');
			}else{
				Q.push_back('*');
			}
		}else if(Monika[i]=='P'){
			if(c>0){
				c--;
				winnum++;
				Q.push_back('S');
			}else{
				Q.push_back('*');
			}
		}else if(Monika[i]=='S'){
			if(a>0){
				a--;
				winnum++;
				Q.push_back('R');
			}else{
				Q.push_back('*');
			}
		}
	}
	//RPS**SS
	if(winnum<needwin){
		cout<<"NO"<<endl;
		return;
	}else{
		cout<<"YES"<<endl;
		for(int i=0;i<Q.size();i++){
			if(Q[i]!='*')continue;
			if(a!=0){Q[i]='R';a--;continue;}
			if(b!=0){Q[i]='P';b--;continue;}
			if(c!=0){Q[i]='S';c--;continue;}
		}
		cout<<Q<<endl;
	}
	
}

int main(){
	cin>>t;
	for(int i=0;i<t;i++){
		init();
		cin>>n;
		cin>>a>>b>>c;
		cin>>Monika;
		
		if(n%2==0)needwin=n/2;
		else needwin = n/2+1;
		
		work();
	}	
}

B - Q老师与十字叉(必做)

Q老师 得到一张 n 行 m 列的网格图,上面每一个格子要么是白色的要么是黑色的。
Q老师认为失去了 十字叉 的网格图莫得灵魂. 一个十字叉可以用一个数对 x 和 y 来表示, 其中 1 ≤ x ≤ n 并且 1 ≤ y ≤ m, 满足在第 x 行中的所有格子以及在第 y 列的 所有格子都是黑色的
例如下面这5个网格图里都包含十字叉
在这里插入图片描述
第四个图有四个十字叉,分别在 (1, 3), (1, 5), (3, 3) 和 (3, 5).
下面的图里没有十字叉
在这里插入图片描述
Q老师 得到了一桶黑颜料,他想为这个网格图注入灵魂。 Q老师 每分钟可以选择一个白色的格子并且把它涂黑。现在他想知道要完成这个工作,最少需要几分钟?

输入

第一行包含一个整数 q (1 ≤ q ≤ 5 * 10^4) — 表示测试组数
对于每组数据:
第一行有两个整数 n 和 m (1 ≤ n, m ≤ 5 * 10^4, n * m ≤ 4 * 10^5) — 表示网格图的行数和列数
接下来的 n 行中每一行包含 m 个字符 — ‘.’ 表示这个格子是白色的, '’ 表示这个格子是黑色的
保证 q 组数据中 n 的总和不超过 5 * 10^4, n
m 的总和不超过 4 * 10^5

输出

答案输出 q 行, 第 i 行包含一个整数 — 表示第 i 组数据的答案

样例输入

9
5 5
..*..
..*..
*****
..*..
..*..
3 4
****
.*..
.*..
4 3
***
*..
*..
*..
5 5
*****
*.*.*
*****
..*.*
..***
1 4
****
5 5
.....
..*..
.***.
..*..
.....
5 3
...
.*.
.*.
***
.*.
3 3
.*.
*.*
.*.
4 4
*.**
....
*.**
*.**

样例输出

0
0
0
0
0
4
1
1
2

思路

并不难的小思维题;
找出行里面的黑点最多的行号设为集合S,设此时白点共a个
找出列里面的黑点最多的列号设为集合E,设此时白点共b个
如果某行和某列的交集是白点则最小值是a+b-1;
否则是a+b;

坑点

行和列如果交叉的地方是白点,则只需要染色一个即可;
在这里插入图片描述

代码

#include <iostream>
#include <cstring>
#include <vector>
#define inf 1e8
using namespace std;
const int maxn=5e4+50;
char *road[maxn];
int q;
int n,m;

vector<int> row;
vector<int> col;

vector<int> row_num,col_num;

void init(){
	row_num.clear();
	col_num.clear();
	
	row.clear();
	col.clear();
	
	row_num.resize(n+10);
	col_num.resize(m+10);
	for(int i=0;i<n+10;i++)row_num[i]=0;
	for(int i=0;i<m+10;i++)col_num[i]=0;
}

void work(){

	for(int i=0;i<n;i++){
		for(int j=0;j<m;j++){
			if(road[i][j]=='.'){
				row_num[i]++;
				col_num[j]++;
			}else if(road[i][j]=='*'){
				continue;
			}
		}
	}
	
	int row_min = inf;
	int col_min = inf;
	
	for(int i=0;i<n;i++){
		if(row_min > row_num[i]){
			row_min = row_num[i];
		}
	}
	for(int i=0;i<m;i++){
		if(col_min > col_num[i]){
			col_min = col_num[i];
		}
	}	
	
	for(int i=0;i<n;i++){
		if(row_min == row_num[i]){
			row.push_back(i);
		}
	}
	for(int i=0;i<m;i++){
		if(col_min == col_num[i]){
			col.push_back(i);
		}
	}	
	
	bool flag = false;
	for(int i=0;i<row.size();i++){
		for(int j=0;j<col.size();j++){
			if(road[row[i]][col[j]]=='.'){
				flag = true;
				break;
			}
		}
	}
	
	int number = col_min+row_min;
	if(flag)number--;
	cout<<number<<endl;
	
}

int main(){
	cin>>q;
	for(int i=0;i<q;i++){
		
		cin>>n>>m;
		init();
		for(int j=0;j<=n;j++){
			road[j] = new char[m+1];
		}
		
		for(int j=0;j<n;j++){
			scanf("%s",road[j]);
//			cout<<"here"<<road[j]<<endl;
		}
		
		work();
		
		
		for(int j=0;j<=n;j++){
			delete []road[j];
		}
	}
}

C - Q老师的考验(必做)

Q老师 对数列有一种非同一般的热爱,尤其是优美的斐波那契数列。
这一天,Q老师 为了增强大家对于斐波那契数列的理解,决定在斐波那契的基础上创建一个新的数列 f(x) 来考一考大家。数列 f(x) 定义如下:
当 x < 10 时,f(x) = x;
当 x ≥ 10 时,f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),ai 只能为 0 或 1。
Q老师 将给定 a0~a9,以及两个正整数 k m,询问 f(k) % m 的数值大小。
聪明的你能通过 Q老师 的考验吗?

输入

输出文件包含多组测试用例,每组测试用例格式如下:
第一行给定两个正整数 k m。(k < 2e9, m < 1e5)
第二行给定十个整数,分别表示 a0~a9。

输出

对于每一组测试用例输出一行,表示 f(k) % m 的数值大小。

样例输入

10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0

样例输出

45
104

思路

综述

并不难,是一个矩阵快速幂的初探。
首先要构造矩阵的递推式,从而找到常数矩阵。矩阵递推式如下
在这里插入图片描述
在这里插入图片描述

注意点:

初始化的问题.如下代码所示:
也就是mx第一个矩阵的初始化问题。

	for(int i=0;i<N;i++)mx.x[0][i] = a[i];
	for(int i=1;i<N;i++){
		mx.x[i][i-1]=1;
	}

总结

矩阵快速幂

模板如下所示,根普通的快速幂十分类似,只不过操作的元素需要重载一下乘法;

Matrix quick_pow(Matrix a,int x){
    Matrix ret;
    /*
        以2*2的矩阵为例
        1 0
        0 1
    */
   ret.x[0][1] = ret.x[1][0] = 0;
   ret.x[0][0] = ret.x[1][1] = 1;
   while(x){
       if(x & 1) ret = ret * a;
       a = a * a;
       x >>= 1;
   }
   return ret;
}

坑点

注意在矩阵快速幂里面单位矩阵注意和相乘的举着的行数一样!!!

代码

//long long问题
 
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std;

const int N=10;
int K,M;
int a[10];
struct Matrix{
	int x[N][N];
	Matrix operator *(const Matrix & t)const{
		Matrix ret;
		for(int i=0;i<N;i++){
			for(int j=0;j<N;j++){
				ret.x[i][j] = 0;
				for(int k=0;k<N;k++){
					ret.x[i][j] += x[i][k] * t.x[k][j] % M;
					ret.x[i][j] %= M;
				}
			}
		}
		return ret;
	}
	Matrix(){memset(x,0,sizeof(x));}
	Matrix(const Matrix &t){memcpy(x,t.x,sizeof(x));}
}; 

Matrix quick_pow(Matrix t, int x){
	Matrix ret;
	for(int i=0;i<N;i++)ret.x[i][i]=1;
	
	while(x){
		if(x & 1) ret = ret * t;
		t = t * t;
		x >>= 1;
	}
	return ret;
}


int main(){
	while(~scanf("%d%d",&K,&M)){
		for(int i=0;i<N;i++){
			scanf("%d",&a[i]);
		}
		if(K<10)printf("%d\n",K);
		else{
			Matrix mx;
			
			for(int i=0;i<N;i++)mx.x[0][i] = a[i];
			for(int i=1;i<N;i++){
				mx.x[i][i-1]=1;
			}
			mx = quick_pow(mx,K-9);
			int ans = 0;
			for(int i=0;i<=9;i++){
				ans += mx.x[0][i]*(9-i);	
			}
			printf("%d\n",ans%M);
		}
	} 
}

D - Q老师染砖(选做)

衣食无忧的 Q老师 有一天突发奇想,想要去感受一下劳动人民的艰苦生活。
具体工作是这样的,有 N 块砖排成一排染色,每一块砖需要涂上红、蓝、绿、黄这 4 种颜色中的其中 1 种。且当这 N 块砖中红色和绿色的块数均为偶数时,染色效果最佳。
为了使工作效率更高,Q老师 想要知道一共有多少种方案可以使染色效果最佳,你能帮帮他吗?

输入

第一行为 T,代表数据组数。(1 ≤ T ≤ 100)
接下来 T 行每行包括一个数字 N,代表有 N 块砖。(1 ≤ N ≤ 1e9)

输出

输出满足条件的方案数,答案模 10007。

样例输入

2
1
2

样例输出

2
6

思路

综述

这是一道用矩阵快速幂来优化DP的问题。
与上一道题的矩阵快速幂优化普通递推过程不同,这里是和DP问题结合,所以首先按照DP问题一般求解思路做。

状态定义

A[i]:表示 i 个格子,红绿均为偶数的染色方案数
B[i]:表示 i 个格子,红绿均为奇数的染色方案数
C[i]:表示 i 个格子,红绿有一个为偶数的染色方案数

状态转移
A[i] = 2 * A[i-1] + C[i-1]
B[i] = 2 * B[i-1] + C[i-1]
C[i] = 2 * A[i-1] + 2 * B[i-1] + 2 * C[i-1]
矩阵快速幂优化

在这里插入图片描述

总结

什么时候需要优化DP

转移方程需要是线性递推式
转移次数很多,如本题是1e9

容易忽略的点

DP问题状态定义,转移方程定义,如何转移
三个基本问题是解决DP的关键。
状态的定义可能会有多个,转移过程也可能是多个。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
using namespace std;

const long long N = 3;
const long long MOD = 10007;
long long T;

struct Matrix{
	long long x[N][N];
	Matrix operator * (const Matrix & t)const{
		Matrix ret;
		for(int i=0;i<N;i++){
			for(int j=0;j<N;j++){
				ret.x[i][j] = 0;
				for(int k=0;k<N;k++){
					ret.x[i][j] += x[i][k] * t.x[k][j] % MOD;
					ret.x[i][j] %= MOD;
				}
			}
		}
		return ret;
	}
	Matrix(){memset(x,0,sizeof(x));}
	Matrix(const Matrix & t){memcpy(x,t.x,sizeof(x));}
};

Matrix quick_pow(Matrix t,long long x){
	Matrix ret;
	for(int i=0;i<N;i++)ret.x[i][i]=1;
	while(x){
		if(x & 1)ret = ret * t;
		t = t * t;
		x >>= 1;
	}
	return ret;
}

int n;

int main(){
	scanf("%d",&T);
	Matrix mx;
	
	while(T--){
		mx.x[0][0]=2;mx.x[0][1]=0;mx.x[0][2]=1;
		mx.x[1][0]=0;mx.x[1][1]=2;mx.x[1][2]=1;
		mx.x[2][0]=2;mx.x[2][1]=2;mx.x[2][2]=2;	
		
		scanf("%d",&n);
		if(n==1)printf("2\n");
		else{
			mx = quick_pow(mx,n-1);
			printf("%lld\n",(mx.x[0][0]*2+mx.x[0][2]*2)%MOD);
		}
		
	}
}

E - Q老师度假(选做)

忙碌了一个学期的 Q老师 决定奖励自己 N 天假期。
假期中不同的穿衣方式会有不同的快乐值。
已知 Q老师 一共有 M 件衬衫,且如果昨天穿的是衬衫 A,今天穿的是衬衫 B,则 Q老师 今天可以获得 f[A][B] 快乐值。
在 N 天假期结束后,Q老师 最多可以获得多少快乐值?

输入

输入文件包含多组测试样例,每组测试样例格式描述如下:
第一行给出两个整数 N M,分别代表假期长度与 Q老师 的衬衫总数。(2 ≤ N ≤ 100000, 1 ≤ M ≤ 100)
接下来 M 行,每行给出 M 个整数,其中第 i 行的第 j 个整数,表示 f[i][j]。(1 ≤ f[i][j] ≤ 1000000)
测试样例组数不会超过 10。

输出

每组测试样例输出一行,表示 Q老师 可以获得的最大快乐值。

样例输入

3 2
0 1
1 0
4 3
1 2 3
1 2 3
1 2 3

样例输出

2
9

思路

综述

这是一道矩阵快速幂和普通的动态规划问题的结合。
首先按照动态规划的思路思考:

构建状态
f[i][j]表示第i天穿j号衣服所获得的最大快乐值
初始化
f[1][k] = 0(1<=k<=M)
转移
f[i][j] = max{f[i-1][k]+M[k][j]}(1<=k<=M)

很显然,复杂度是O(N*M*M)大约是1e10需要优化

矩阵快速幂优化

a n s [ i ] = [ f [ i ] [ 1 ] . . . f [ i ] [ M ] ] = [ H [ 1 ] [ 1 ] . . . H [ M ] [ 1 ] . . . . . . . . . H [ 1 ] [ M ] . . . H [ M ] [ M ] ] ∗ [ f [ i − 1 ] [ 1 ] . . . f [ i − 1 ] [ M ] ] ans[i]=\left[ \begin{matrix} f[i][1]\\ .\\ .\\ .\\ f[i][M] \end{matrix} \right]=\left[ \begin{matrix} H[1][1] & ... & H[M][1] \\ . & . & .\\ . & . & .\\ . & . & .\\ H[1][M] & ... & H[M][M] \end{matrix} \right] * \left[ \begin{matrix} f[i-1][1]\\ .\\ .\\ .\\ f[i-1][M] \end{matrix} \right] ans[i]=f[i][1]...f[i][M]=H[1][1]...H[1][M].........H[M][1]...H[M][M]f[i1][1]...f[i1][M]
这里的乘号\‘*’和数学里面的矩阵的乘法不同,这里是max运算,也就是

c[i][j] = max{a[i][k] + b[k][j]}(1<=k<=M)

注意下面矩阵乘法中的for循环中间的运算是max

		for(int i=0;i<maxn;i++){
			for(int j=0;j<maxn;j++){
				ret.x[i][j] = 0;
				for(int k=0;k<maxn;k++){
					ret.x[i][j] = max(ret.x[i][j],(x[i][k] + t.x[k][j]));
				}
			}
		}

总结

  • 矩阵快速幂中的矩阵运算,只需要满足结合律就行,并不一定非得是乘法
  • 这里的矩阵快速幂里面的矩阵和给定的快乐值矩阵不一样,需要转置

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>

using namespace std;
const long long maxn = 105;
long long max2d[105];

struct Matrix{
	long long x[maxn][maxn];
	Matrix operator * (const Matrix &t )const{
		Matrix ret;
		for(int i=0;i<maxn;i++){
			for(int j=0;j<maxn;j++){
				ret.x[i][j] = 0;
				for(int k=0;k<maxn;k++){
					ret.x[i][j] = max(ret.x[i][j],(x[i][k] + t.x[k][j]));
				}
			}
		}
		return ret;
	}
	Matrix(){memset(x,0,sizeof(x));}
	Matrix(const Matrix &t){memcpy(x,t.x,sizeof(x));}
};
Matrix quick_pow(Matrix &t,long long x){
	Matrix ret;
	while(x){
		if(x & 1)ret = ret * t;
		t = t * t;
		x >>= 1;
	}
	return ret;
}
void init(){
	for(int i=0;i<maxn;i++)max2d[i] = 0;
}
int N,M;
int main(){
	while(~scanf("%d%d",&N,&M)){
		init();
		Matrix mx;
		
		for(int i=0;i<M;i++){
			for(int j=0;j<M;j++){
				scanf("%lld",&mx.x[i][j]);
			}
		}
		for(int i=0;i<M;i++){
			for(int j=0;j<M;j++){
				max2d[i] = max(max2d[i],mx.x[i][j]);
			}
		}
		mx = quick_pow(mx , N-2);
		long long ans=-1;
		for(int i=0;i<M;i++){
			for(int j=0;j<M;j++)
			ans = max(ans,(mx.x[i][j]+max2d[j]));
		}
		printf("%lld\n",ans);
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值