自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 从TP/TN/FP/FN到mAP

判别器判别器的概念主要出现在target为离散值的任务中,最常见的就是分类任务。TP/TN/FP/FN根据离散目标值的特性,我们引入真假正负的概念。该图片引用自csdn-TP、TN、FP、FN超级详细解析如何更方便地记忆上面出现的TP/TN/FP/FN呢?第一个字母是True/False,代表真假,也就是预测值与目标值是否相符。第二个字母是Positive/Negtive,代表正负,也就是预测值的正负。Precision/RecallAccuracy - 准确率:判别正确的样本数量

2022-01-10 11:37:19 385

原创 GAN 的一些基础

GAN 的一些基础GAN的基础理论损失函数下式为基础的loss纳什平衡模式崩溃GAN的最根本优势使用判别器替代难以描述的抽象loss。【进阶】WGAN 确实厉害,下面这篇文章写得很好。知乎-令人拍案叫绝的Wasserstein GAN引用一下这篇知乎文章,WGAN总结起来对模型的改进就四点:判别器最后一层去掉sigmoid生成器和判别器的loss不取log每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c不要用基于动量的优化算法(包括momentum和Adam)

2022-01-07 10:41:41 153

原创 关于目标框回归的IOU Loss系列

IOU LOSSIOU_loss=−ln(2∗∣A∣∩∣B∣∣A∣+∣B∣)IOU\_loss = -ln(\frac{2 * |A|\cap |B|}{|A| + |B|})IOU_loss=−ln(∣A∣+∣B∣2∗∣A∣∩∣B∣​)系数为2,因为分母中会将交集部分计算两遍,或者改写成如下形式:IOU_loss=−ln(∣A∣∩∣B∣∣A∣∪∣B∣)IOU\_loss = -ln(\frac{|A|\cap |B|}{|A| \cup |B|})IOU_loss=−ln(∣A∣∪∣B∣∣A∣∩∣B

2022-01-07 10:41:09 395

原创 从风格迁移与格拉姆矩阵(Gram Matrix)聊到实例归一化(IN - Instance Normalization)

什么是风格迁移?风格迁移指的是将A风格的图像转换为B风格的图像,如素描转油画等。什么是Gram Matrix?图像尺寸假定为H x W x C的三维矩阵,讲其进行transpose和resize之后我们可以获得C x HW 与 HW x C这两个二维矩阵。对两个矩阵进行点乘,即可获得C x C的Gram Matrix。那么格拉姆矩阵又有什么意义呢?说起格拉姆矩阵的意义,我们先要了解向量点乘的几何含义。X⋅Y=(x0,x1,...,xn)⋅(y0,y1,...,yn)=x0⋅y0+...+xn⋅y

2021-12-20 23:33:53 1118

原创 SuperPoint - 一个网络结构简单清晰的特征点任务网络

SuperPoint - 一个网络结构简单清晰的特征点任务网络任务描述传统算法SuperPoint网络结构Loss定义半自监督训练推理魔改思考任务描述角点任务一般分为2个部分:【角点检测】和【描述子生成】角点检测:【角点】:图像处理中,特征点指的是图像灰度值发生剧烈变化的点或者在图像边缘上曲率较大的点(即两个边缘的交点)。(来自百度百科)在实际应用中,我们需要在不同的图像中寻找这样的点,并且要求在A图中找到的点在B图中也要找到相同的点。描述子生成:对于进一步的匹配任务来说,每个角点都需要一个

2021-12-19 22:07:28 2602

原创 Ubuntu下,利用pb格式文件,编译基于Tensorflow的C++动态库文件

1. 简述一个已训练的神经网络模型,要经过设计网络、选择数据集、训练、调优、固化(freeze)等过程。在这之后,为了能够让我们的神经网络,更广泛地应用于各个程序中,我们要将其编译成C++的库文件(xxx.so/xxx.a)。这样我们就可以轻松的通过C++ API接口来调用它,甚至可以不用在环境中构建tensorflow环境(静态库),方便移植到各种AIOT设备(这里有可能会涉及到交叉编译)。...

2019-09-22 13:37:11 1379

原创 剔除错误匹配算法:RANSAC与MSAC分析

什么是剔除错误匹配?在我之前的一篇文章中使用了很简陋的一对一特征点匹配算法。获得了如下的结果:这个结果是粗糙且不令人满意的,我们接下来要介绍两种算法来剔除上述结果中的错误匹配对。RANSAC 与 MASC 思想概述RANSAC全称Random Sample Consensus(随机抽样一致算法),MSAC全称M-Estimate Sample Consensus。这两种算法基本思路一致,...

2019-04-03 05:58:56 11758 18

原创 透射投影矩阵的线性与非线性估计,Levenberg Marquardt 算法应用(非线性估计),附代码/数据

背景知识简介在计算机视觉中,有一块领域叫做相机标定,这篇博客主要描述的是相机标定中,通过对应的3d点坐标(世界坐标系,World Frame)和2d点坐标(图像坐标系,Image Frame)透射投影。什么是透射投影我们需要把3d点(xW,yW,zW,1)(x_W,y_W,z_W,1)(xW​,yW​,zW​,1)的坐标从世界坐标系(World Frame)转化到图像坐标系(Image Fr...

2019-03-26 10:35:24 740

原创 粗糙的一对一特征点匹配算法,挖坑Outer Lier Reception和MSAC

这是一篇填坑文。之前写了一篇关于特征点检测的文章,其中只提及了特征点检测的部分,下面是关于特征点匹配的算法介绍。这不是一个非常精确的匹配算法,只能筛选出大致正确的匹配特征点。如果以后有时间,我会继续介绍进一步的精确匹配算法(Outer Lier Rejection 和 M-estimator Sample Consensus(MSAC) 的组合应用)。听起来好像又给自己挖了个坑。。。。。好了...

2019-03-12 15:27:02 2519 1

原创 特征点(角)检测与匹配,forstner corner detection

原始链接::https://github.com/shl666/UCSD_CV_Intro/blob/master/chapter_2/corner_detector_matching.md也欢迎关注我的不知道什么时候会更新的CV入门教程(根据UCSD CSE252系列课程改编):https://github.com/shl666/UCSD_CV_Intro什么是特征点检测(Corner De...

2019-01-17 17:33:23 11058 27

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除