题目请戳:洛谷P1824 进击的奶牛
题目描述
Farmer John建造了一个有N(2<=N<=100,000)个隔间的牛棚,这些隔间分布在一条直线上,坐标是x1,…,xN (0<=xi<=1,000,000,000)。
他的C(2<=C<=N)头牛不满于隔间的位置分布,它们为牛棚里其他的牛的存在而愤怒。为了防止牛之间的互相打斗,Farmer John想把这些牛安置在指定的隔间,所有牛中相邻两头的最近距离越大越好。那么,这个最大的最近距离是多少呢?
输入格式
第1行:两个用空格隔开的数字N和C。
第2~N+1行:每行一个整数,表示每个隔间的坐标。
输出格式
输出只有一行,即相邻两头牛最大的最近距离。
输入输出样例
输入
5 3
1
2
8
4
9
输出
3
解题思路
首先牛棚的分布是x1,...,xN (0<=xi<=1,000,000,000)
,
1
0
10
10^{10}
1010 <
1
0
8
10^8
108 暴力肯定会TLE
那么我们如何减少时间复杂度呢。枚举每一种可行解是不大可行了。但是如果给出一个猜测解,去验证这个解是否可行就容易得多。也就是我们先在范围x1~xN
内随便猜一个可能的间隔mid
,然后验证如果每两头牛之间至少相邻mid
个牛棚是否可行。
如果这个mid
可行,则不用考虑比它小的解了(比mid
小的解可能可行,但题目要求的是最大的可行mid
)如果我们取的mid
位于可行区间中点左右的位置,一下就排除了一半!!(雨巨:“是不是很快乐!!” ๑乛◡乛๑)
而如果当前猜测的mid
不可行,则比它大的解也不用考虑了(因为一定不可行)
于是我们的思路从枚举寻找两头最近牛之间的最大距离,变成了给一个距离判断这个距离是否可行。
(好啦二分的思路讲完啦)
简单地说,就是每次取一个临近中点的点,判断这个点的值是否满足条件。是则取这个点的右半边继续上述过程。否则取这个点的左半边继续上述过程。
接下来上代码:
#include<iostream>
#include<algorithm>
#include<map>
using namespace std;
int n,a[100005],c;
int check(int low, int high){
int dis;
while(low <= high){
int cow = c - 1;//第一头牛已放入第一个隔间
dis = low + (high - low) / 2;//二分设定距离 这种写法防爆int
if( dis == low )
break; //与low相等,说明该数据已经测试过可行且无法再找到更优解
int i = 0, flag = 1,tar;
while(cow){
tar = a[i] + dis;
if( a[n-1] < tar){
flag = 0;
break;
}
while(a[i] < tar && i < n) //找到下一个满足距离的隔间
i++;
cow--;
}
if(flag) //更新可行解的区间[low,high)
low = dis;
else
high = dis;
}
return dis;
}
int main(){
cin>>n>>c;
for(int i = 0; i < n; i++)
cin>>a[i];
sort(a, a + n);
cout<<check(1, a[n - 1] - a[0]);
return 0;
}
其实check和二分是可以分开的看起来清楚一些。我直接混在一起写了一个函数。
顺带一提。判断边界或者返回值最好的办法就是带几组数据进去试一下。还可以用我这组样例试试:
输入
5 3
1
2
6
4
5
输出
2