绝对误差限 & 导数

博客探讨了绝对误差限与导数的概念,通过泰勒展开式解释了两者之间的联系。在近似计算中,绝对误差限可以用导数的模乘以点之间的距离来表示。此外,还对这一理论进行了多维推广,展示了在多变量函数中如何计算绝对误差限。
摘要由CSDN通过智能技术生成

绝对误差限 & 导数

1. 结论:

对函数 f ( x ) f(x) f(x) x ′ x' x处使用泰勒展开: f ( x ) = f ( x ′ ) + f ′ ( x ′ ) ( x − x ′ ) + o ( x − x ′ ) f(x) = f(x') + f'(x')(x-x') + o(x-x') f(x)=f(x)+f(x)(xx)+o(xx)

于是: ∣ f ( x ) − f ( x ′ ) ∣ = ∣ f ′ ( x ′ ) ( x − x ′ ) + o ( x − x ′ ) ∣ ≤ ∣ f ′ ( x ′ ) ∣ ⋅ ϵ ( x ) + o ( ϵ ( x ) ) |f(x) - f(x')| = |f'(x')(x-x') + o(x-x')| \leq |f'(x')|\cdot \epsilon(x) + o(\epsilon(x)) f(x)f(x)=f(x)(xx)+o(xx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值