范数概念以及相关推导

本文深入探讨了向量和矩阵范数的概念,包括它们的定义、性质和等价性。通过证明展示了不同范数之间的关系,如1范数、2范数和无穷范数。此外,还讨论了向量和矩阵的收敛性,矩阵特征值与谱半径的关系,以及线性方程组的条件数和误差分析。预条件方法和迭代改善在解决病态方程组中的作用也被提及。
摘要由CSDN通过智能技术生成

范数

向量范数

常见范数

  • p范数(p = 1, 2, ∞ \infty , ⋯ \cdots ): ∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ||x||_p = (\sum\limits_{i=1}^{n}|x_i|^p)^{\frac{1}{p}} xp=(i=1nxip)p1
  • 0范数:向量中非0分量的个数(用来衡量稀疏度)

定义:向量范数

∣ ∣ ⋅ ∣ ∣ ||\cdot|| 是向量空间 R n R^n Rn上的实值函数,且满足条件:

  • 非负性 ∣ ∣ ⋅ ∣ ∣ ≥ 0 ||\cdot||\geq0 0 ,且 ∣ ∣ x ∣ ∣ = 0 ||x|| = 0 x=0当且仅当 x = 0 x=0 x=0

  • 齐次性:对任何实数 α \alpha α和向量 x ∈ R n x\in{R^n} xRn : ∣ ∣ α x ∣ ∣ = ∣ α ∣ ⋅ ∣ ∣ x ∣ ∣ ||\alpha{x}||=|\alpha|\cdot||x|| αx=αx

  • 三角不等式:对任意向量 x , y ∈ R n x, y\in{R^n} x,yRn ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\leq||x|| + ||y|| x+yx+y

则称 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| R n R^n Rn空间上的范数, ∣ ∣ x ∣ ∣ ||x|| x为向量 x x x的范数

定理:范数的等价性

对于 R n R^n Rn上的任何两种向量范数 ∣ ∣ ⋅ ∣ ∣ α ||\cdot||_{\alpha} α ∣ ∣ ⋅ ∣ ∣ β ||\cdot||_{\beta} β,存在正常数m, M,使得:

m ∣ ∣ x ∣ ∣ β ≤ ∣ ∣ x ∣ ∣ α ≤ M ∣ ∣ x ∣ ∣ β , ∀ x ∈ R n m||x||_{\beta} \leq ||x||_{\alpha} \leq M||x||_{\beta}, \quad \forall{x}\in{R^n} mxβxαMxβ,xRn

证明:

首先证明范数的连续性

R n R^n Rn中的向量表示为 x = ∑ i = 1 n x i e i x = \sum\limits_{i=1}^{n}{ {x_i}{e_i}} x=i=1nxiei, 其中 e 1 , e 2 , ⋯   , e n e_1, e_2, \cdots, e_n e1,e2,,en为n维单位坐标向量

f ( x ) = ∣ ∣ x ∣ ∣ α f(x) = ||x||_{\alpha} f(x)=xα由于:

∣ f ( x ) − f ( y ) ∣ = ∣ ∣ ∣ x ∣ ∣ α − ∣ ∣ y ∣ ∣ α ∣ ≤ ∣ ∣ x − y ∣ ∣ α = ∣ ∣ ∑ i = 1 n ( x i − y i ) e i ∣ ∣ ( 三 角 不 等 式 ) ≤ ∑ i = 1 n ∣ x i − y i ∣ ⋅ ∣ ∣ e i ∣ ∣ α ( 三 角 不 等 式 , 范 数 定 义 ) ≤ ∑ i = 1 n ∣ x i − y i ∣ 2 ∑ i = 1 n ∣ ∣ e i ∣ ∣ α 2 ( 柯 西 − 施 瓦 茨 不 等 式 ) |f(x) - f(y)| = |\quad||x||_{\alpha} - ||y||_{\alpha}\quad|\\ \leq ||x -y||_{\alpha}=||\sum\limits_{i=1}^{n}(x_i - y_i)e_i||\quad(三角不等式)\\\leq\sum\limits_{i=1}^{n}|x_i - y_i|\cdot||e_i||_{\alpha}\quad(三角不等式,范数定义)\\\leq\sqrt{\sum\limits_{i=1}^{n}|x_i - y_i|^2}\sqrt{\sum\limits_{i=1}^{n}||e_i||_{\alpha}^2}\quad(柯西-施瓦茨不等式) f(x)f(y)=xαyαxyα=i=1n(xiyi)ei()i=1nxiyieiα()i=1nxiyi2 i=1neiα2 西

于是: lim ⁡ Δ x → 0 Δ f ( x ) = 0 \lim\limits_{\Delta{x}\rightarrow{0}}\Delta{f(x)} = 0 Δx0limΔf(x)=0, 即 f ( x ) f(x) f(x) R n R^n Rn上的连续函数

采用 β \beta β =2来证明范数等价性

引入 R n R^n Rn中的有界闭集 S n = { x : ∣ ∣ x ∣ ∣ 2 = 1 , x ∈ R n } S^n = \{ {x:||x||_2 = 1,\quad x\in{R^n}}\} Sn={ x:x2=1,xRn}

根据连续函数性质, f ( x ) f(x) f(x) S n S^n Sn上达到最大和最小值,即存在点 x 1 , x 2 ∈ S n x_1, x_2\in{S^n} x1,x2Sn,使得:

0 ≤ m = f ( x 1 ) ≤ f ( x ) ≤ f ( x 2 ) = M , ∀ x ∈ S n 0 \leq m = f(x_1) \leq f(x) \leq f(x_2) = M, \forall{x} \in {S^n} 0m=f(x1)f(x)f(x2)=M,xSn

x = 0 x = 0 x=0,则m,M可取任意正常数

x ≠ 0 x \ne 0 x=0,则对任何 x ∈ R n x\in{R^n} xRn,由于 ∣ ∣ x ∣ ∣ α ∣ ∣ x ∣ ∣ 2 ∈ S n \frac{||x||_{\alpha}}{||x||_2}\in{S^n} x2xαSn,则有:

0 < m ≤ f ( x ∣ ∣ x ∣ ∣ 2 ) = ∣ ∣ x ∣ ∣ α ∣ ∣ x ∣ ∣ 2 ≤ M , ∀ x ∈ R n 0<m\leq{f(\frac{x}{||x||_2})}=\frac{||x||_{\alpha}}{||x||_2}\leq{M},\quad \forall x \in {R^n} 0<mf(x2x)=x2xαM,xRn

m ∣ ∣ x ∣ ∣ 2 ≤ ∣ ∣ x ∣ ∣ α ≤ M ∣ ∣ x ∣ ∣ 2 m||x||_2 \leq ||x||_{\alpha} \leq M||x||_2 mx2xαMx2

其他的 β \beta β范数同理,从而证明了范数等价性

矩阵范数等价性的证明完全类似

范数的等价性表明:一个向量若按照某种范数是一个小量,则它按照任何一种范数也将是一个小量

常用的三种向量范数满足下述等价关系:

∣ ∣ x ∣ ∣ ∞ ≤ ∣ ∣ x ∣ ∣ 1 ≤ n ∣ ∣ x ∣ ∣ ∞ ||x||_\infty \leq ||x||_1 \leq n||x||_\infty xx1nx (1)

∣ ∣ x ∣ ∣ ∞ ≤ ∣ ∣ x ∣ ∣ 2 ≤ n ∣ ∣ x ∣ ∣ ∞ ||x||_\infty \leq ||x||_2 \leq \sqrt{n}||x||_\infty xx2n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值