串定长顺序存储方式
我们显式地在串的索引为0处存储串长。
#define MAXSTRLEN 255 // 用户可在255以内定义最大串长
typedef unsigned char SString[MAXSTRLEN+1]; //0号单元存放串的长度
串的模式匹配
模式匹配:设有主串S和子串T,子串在主串中的定位称为模式匹配或串匹配(字符串匹配) 。
通常也把主串S称为目标串,把子串T称为模式串。
模式匹配成功是指在目标串S中找到一个模式串T是S的子串,返回T在S中的位置。
模式匹配不成功则指目标串S中不存在模式串T不是S的子串,返回-1。
BF算法
又称简单的、朴素的、穷举的模式匹配算法。算法的思路是
将主串的第 i 个字符和模式的第一个字符比较,
- 若相等,继续逐个比较后续字符;直到主串的一个连续子串字符序列与模式相等。返回值为主串中模式串匹配的子序列第一个字符的序号,即匹配成功。
- 若不等,从主串的下一字符起,重新与模式的第一个字符比较。
int Index_BF( SString S, SString T )
{// 返回模式串T在主串S中的位置。若不存在,则返回0。T非空
int i = 1,j = 1;
while ( i <= S[0] && j <= T[0] )
{
if ( S[i] == T[j] ) {++i;++j;} // 继续比较后续字符
else {i = i - j + 2;j = 1;} // 指针回溯重新开始下一趟匹配
}
if(j>T[0]) return i-T[0]; //返回匹配成功时主串对应的第一个字符的下标
else return 0; //模式匹配不成功
} // Index_BF
时间复杂度:若主串s长度为n,模式串t长度为m
最好情况下的时间复杂度为O(m)。
算法在字符比较不相等,需要回溯(即i=i-j+1):即退到s中的下一个字符开始进行继续匹配。
最坏情况下每趟比较m次,进行
n
-
m
+
1
n-m+1
n-m+1趟匹配,总比较次数为
m
(
n
−
m
+
1
)
m(n-m+1)
m(n−m+1),时间复杂度为
O
(
n
×
m
)
O(n×m)
O(n×m)。
KMP算法
KMP算法原理
KMP算法一种改进的模式匹配算法,是D.E.Knuth、V.R.Pratt、J.H.Morris于1977年联合发表,KMP算法又称克努特-莫里斯-普拉特操作。KMP算法的设计思想:当出现不匹配时,利用已经比较过的已知内容,来避免将主串指针回退到已比较的字符之前。
实现KMP算法需要解决的问题:
-
为什么主串的“指针”:i可以不回溯?
若某趟在 S i S_i Si和 T j T_j Tj“失配”时,
T 1 ∼ T j − 1 = S i − j + 1 ∼ S i − 1 T _{1} \sim T _{ j -1}= S _{ i - j +1} \sim S _{ i -1} T1∼Tj−1=Si−j+1∼Si−1
主串的切片 S i − j + 1 ∼ S i − 1 S _{ i - j +1} \sim S _{ i -1} Si−j+1∼Si−1的后缀中是否有能成功匹配的前缀,仅和 T 1 ∼ T j − 1 T _{1} \sim T _{ j -1} T1∼Tj−1的性质有关,可以在匹配算法之前预计算出来。 -
若某趟在 S i S_i Si和 T j T_j Tj“失配”时,主串中i不回溯,下一步进行 S i S_i Si与 T k T_k Tk的比较,那么k如何求出?
S i − k + 1 ∼ S i − 1 S _{ i - k +1} \sim S _{ i -1} Si−k+1∼Si−1的后缀必须是T的前缀:
T 1 ∼ T k − 1 = S i − k + 1 ∼ S i − 1 T _{1} \sim T _{ k -1}= S _{ i - k +1} \sim S _{ i -1} T1∼Tk−1=Si−k+1∼Si−1
S i − k + 1 ∼ S i − 1 S _{ i - k +1} \sim S _{ i -1} Si−k+1∼Si−1在上一步已经与T匹配的部分:
T j − k + 1 ∼ T j − 1 = S i − k + 1 ∼ S i − 1 T _{ j - k +1} \sim T _{ j -1}= S _{ i - k +1} \sim S _{ i -1} Tj−k+1∼Tj−1=Si−k+1∼Si−1
联立得:
T 1 ∼ T k − 1 = T j − k + 1 ∼ T j − 1 T _{1} \sim T _{ k -1}= T _{ j - k +1} \sim T _{ j -1} T1∼Tk−1=Tj−k+1∼Tj−1
k的解集为 K = { k ∣ k = 2 , 3 , . . . , j − 1 且 T 1 ∼ T k − 1 = T j − k + 1 ∼ T j − 1 } K=\{ k \mid k=2,3,...,j-1 \text { 且 }T _{1} \sim T _{ k -1}= T _{ j - k +1} \sim T _{ j -1} \} K={k∣k=2,3,...,j−1 且 T1∼Tk−1=Tj−k+1∼Tj−1}
k越大,模式串滑动的距离越小,为了避免遗漏选取k的最大值 k = max K k=\max K k=maxK
模式中的前k-1个字符(最大真前缀)与模式中 T j T_j Tj字符前面的k-1个字符(最大真后缀)相等时,模式T就可以向右"滑动"至使 T k T_k Tk和 S i S_i Si对准,继续向右进行比较即可。
滑动位置k仅与模式串T有关。
因此可以预先为模式串设定一个next数组,若令next[j]=k,则next[j]表明当模式串中的第j个字符与主串中相应字符“失配”时,模式串中需要重新和主串中该字符进行比较的字符的位置。
n
e
x
t
[
j
]
=
{
0
,
当
j
=
1
时
k
=
max
K
,
当
j
≥
2
,
k
≠
∅
1
,
当
j
≥
2
,
k
=
∅
next[j]=\left\{\begin{array}{ll}0, & 当 j=1 时 \\ k=\max K, & 当 j\geq2, k\neq \varnothing \\ 1, & 当 j\geq2, k= \varnothing \end{array}\right.
next[j]=⎩⎨⎧0,k=maxK,1,当j=1时当j≥2,k=∅当j≥2,k=∅
其中
K
=
{
k
∣
k
=
2
,
3
,
.
.
.
,
j
−
1
且
T
1
∼
T
k
−
1
=
T
j
−
k
+
1
∼
T
j
−
1
}
K=\{ k \mid k=2,3,...,j-1 \text { 且 }T _{1} \sim T _{ k -1}= T _{ j - k +1} \sim T _{ j -1} \}
K={k∣k=2,3,...,j−1 且 T1∼Tk−1=Tj−k+1∼Tj−1}
next[1]=0 表示T[1]与S[i]失配,下一步进行T[1]与S[i+1]的比较。
next[j]=1 表示
S
i
−
k
+
1
∼
S
i
−
1
S _{ i - k +1} \sim S _{ i -1}
Si−k+1∼Si−1的后缀都不为T的前缀:下一步进行T[1]与S[i]的比较。
KMP算法实现
int Index_KMP(SString S, SString T, int pos, int next[])
{// 利用模式串T的next函数求T在主串S中第pos个字符之后的位置的KMP算法
// 其中,T非空,1≤pos≤StrLength(S)。
int i = pos, j = 1;
while ( i<=S[0] && j<=T[0] )
{
if ( j==0 || S[i]==T[j] ){++i; ++j; } // 继续比较后继字符
else j=next[j]; // 模式串向右移动
}
if(j > T[0]) return i-T[0]; // 匹配成功,返回匹配模式串的首字符下标
else return 0; //匹配失败
} // Index_KMP
求模式串T的next值算法
- 显然,next[1]=0, next[2]=1
- 如果next[j] =k,表明有
T
1
∼
T
k
−
1
=
T
j
−
k
+
1
∼
T
j
−
1
T _{1} \sim T _{ k -1}= T _{ j - k +1} \sim T _{ j -1}
T1∼Tk−1=Tj−k+1∼Tj−1,此时next[j+1]可能有两种情况:
(1). T k = T j T_k=T_j Tk=Tj,则 T 1 ∼ T k = T j − k + 1 ∼ T j T _{1} \sim T _{ k }= T _{ j - k +1} \sim T _{ j } T1∼Tk=Tj−k+1∼Tj,因此next[j+1]=next[j]+1=k+1;
(2). T k ≠ T j T_k\neq T_j Tk=Tj,则相当于在模式串 T 1 ∼ T k T _{1} \sim T _{ k } T1∼Tk与主串 T T T的模式匹配问题中k于j失配,设 k ′ = n e x t [ k ] k'=next[k] k′=next[k],
若 k ′ ≥ 2 k'\geq 2 k′≥2,则有 T 1 ∼ T k ′ − 1 = T j − k ′ + 1 ∼ T j − 1 T _{1} \sim T _{ k' -1}= T _{ j - k' +1} \sim T _{ j -1} T1∼Tk′−1=Tj−k′+1∼Tj−1,将k’赋给k并返回步骤2. ;
否则说明 T j − k + 1 ∼ T j − 1 T _{ j - k +1} \sim T _{ j -1} Tj−k+1∼Tj−1的真后缀中没有 T 1 ∼ T k T _{1} \sim T _{ k } T1∼Tk的前缀,则next[j+1]=1
void get_next( SString T, int &next[] )
{// 求模式串T的next函数值并存入数组next
int i = 1, k = 0; next[1] = 0;
while ( i < T[0] )
{ if ( k == 0 || T[i] == T[k] )
{
++i;++k;
next[i] = k;
}
else k = next[k];
}
} // get_next
时间复杂度分析
BF算法分析
最好情况下的时间复杂度为
O
(
m
)
O(m)
O(m)。
算法在字符比较不相等,需要回溯(即i=i-j+1):即退到s中的下一个字符开始进行继续匹配。
最坏情况下每趟比较m次,进行n-m+1趟匹配,总比较次数为m(n-m+1),时间复杂度为
O
(
n
×
m
)
O(n×m)
O(n×m)。 平均时间复杂度
O
(
n
×
m
)
O(n×m)
O(n×m)
KMP算法分析
设串S的长度为n, 串T长度为m,求next数组的时间复杂度为 O ( m ) O(m) O(m),在后面的匹配中因主串S的下标不减即不回溯,比较次数可记为n,所以KMP算法平均时间复杂度为 O ( n + m ) O(n+m) O(n+m)。
KMP算法与BF算法比较
- 虽然朴素算法最坏时间复杂度为 O ( n × m ) O(n\times m) O(n×m),但一般情况下,其实际执行时间近似于 O ( n + m ) O(n+m) O(n+m),故仍被采用。
- KMP算法仅当模式与主串存在许多“部分匹配”时才比朴素算法快得多。
- KMP算法的最大特点是指示主串的指针i不需要回溯,这对处理从外设输入的庞大文件很有效,可以边读入边匹配而无需回头重读。